Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#нейросети
Разработанные в Центре искусственного интеллекта НИУ ВШЭ нейросетевые модели значительно улучшают прогнозирование риска ожирения, диабета первого типа, псориаза и других многофакторных заболеваний. Совместное исследование с компанией Genotek показало, что алгоритмы глубокого обучения эффективнее традиционных методов, особенно при сложных взаимодействиях генов (эпистазах).
Исследователи из МФТИ впервые систематически изучили, как изменяется и стабилизируется процесс обучения нейронных сетей по мере добавления новых данных. Их работа, сочетающая теоретический анализ и обширные эксперименты, показывает, что так называемый «ландшафт функции потерь» нейросети сходится к определенной форме при увеличении размера выборки, что имеет важные последствия для понимания глубинного обучения и разработки методов определения необходимого объема данных.
Под впечатлением от все более широких возможностей систем искусственного интеллекта некоторые пользователи готовы проводить часы за общением с голосовыми ИИ-ассистентами или текстовыми чат-ботами. Неудивительно, что в результате таких контактов ИИ перестает восприниматься как бездушная технология, а начинает казаться заслуживающим доверия собеседником, практически другом или даже чем-то большим. Настолько, что сюжет фильма «Она», в котором главный персонаж в исполнении Хоакина Феникса влюбился в ИИ-личность по имени Саманта, уже не выглядит таким фантастическим. Тенденция вызывает тревогу: международная группа психологов предупредила, что углубление отношений с ИИ до уровня романтических несет серьезные риски — вплоть до разрушения человеческих связей и суицидов.
Исследователи Центра искусственного интеллекта Сколтеха совместно с коллегами из Самарского университета разработали систему для автоматического выделения этапов производственных процессов по видеопотокам. С ее помощью нейросеть сможет сама определить отклонения от производственного процесса и даже предотвращать аварийные ситуации. Используемый подход самообучения (self-supervised learning) позволяет сократить затраты на ручную разметку данных и повысить устойчивость работы модели в реальных условиях.
Новое исследование показало, что нейросети лучше людей справились с созданием подписей к популярным интернет-мемам. Сгенерированные ИИ варианты в среднем получили более высокие оценки за юмор, креативность и «вирусность» — потенциал к широкому распространению. Впрочем, в «индивидуальном зачете» все-таки победили люди: самые смешные отдельные примеры были созданы без помощи ИИ-алгоритмов.
Исследователи из НИУ ВШЭ в Нижнем Новгороде показали, как с помощью нейросети воссоздавать динамику нейрона мозга, имея всего один ряд измерений, например запись его электрической активности. Разработанная нейросеть научилась восстанавливать полную динамику системы и предсказывать ее поведение при изменении условий. Такой метод может помочь изучать сложные биологические процессы, даже если нет возможности провести все необходимые измерения.
Исследователи Центра искусственного интеллекта Сколтеха Никита Беляков и Светлана Илларионова представили новую методику семантической сегментации мультиспектральных данных, с помощью которой можно распознавать облака, тени и снежные участки на спутниковых снимках. Такой подход не потребует дополнительного участия человека в аннотировании данных, а точность распознавания сложных климатических структур на снимках повысится.
Обслуживающие организации домов часто пренебрегают выполнением периодических осмотров и обследований для определения их технического состояния и своевременного восстановления повреждений — это дорого. При нерегулярных осмотрах сроки безопасной эксплуатации зданий снижаются. Использование беспилотников с автоматическим определением состояния стен позволяет точнее устанавливать наличие дефектов, снизить влияние субъективности экспертов, повысить производительность труда и скорость создания отчетов о состоянии домов. Ученые Пермского Политеха разрабатывают программу с искусственным интеллектом, способную выявлять аварийное состояние зданий и его причины по фотографиям трещин. Проектом уже заинтересовалось ведущее промышленное предприятие Пермского края.
Команда исследователей с участием Александра Ширнина из НИУ ВШЭ создала две модели для обнаружения в научных текстах частей, сгенерированных искусственным интеллектом. В системе AIpom соединены два типа моделей — декодер и энкодер, что позволяет ей эффективнее находить сгенерированные вставки. Система Papilusion подходит для распознания исправлений с помощью синонимов и кратких пересказов, сгенерированных нейросетью, в работе она использует модели одного типа — энкодеры. В перспективе подобные модели помогут в проверке оригинальности и достоверности научных публикаций.
«Яндекс» внедряет нейросетевые технологии с 2010-х годов — этому предшествовало много лет исследований в сфере машинного обучения. Со временем такие разработки сделали сервисы компании удобнее и быстрее: например, сегодня пользователи «Поиска» получают более подробные ответы на свои запросы, в которых могут комбинировать текст и изображение.
В современном мире штрихкоды стали неотъемлемой частью нашей жизни, они встречаются повсюду — от товаров в магазинах до медикаментов в больницах. Однако часто штрихкоды повреждаются по различным причинам: ежедневный износ, брызги жидкости или загрязнения, что затрудняет их распознавание. Это может привести к ошибкам в учете товаров, медикаментов и других важных объектов. В МТУСИ предложили определенный алгоритм распознавания поврежденных штрих-кодов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Последние комментарии