Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые узнали, как ускорить разработку безопасных аккумуляторов для электромобилей
Исследователи из Сколтеха и Института AIRI показали, как при помощи методов машинного обучения ускорить разработку новых материалов для твердотельных аккумуляторов. Нейросети оказались способны распознавать перспективные материалы для электролитов и защитных покрытий — ключевых элементов твердотельных аккумуляторов. По мере совершенствования эта технология может заменить литий-ионные аналоги в электромобилях и портативной электронике, что увеличит время автономной работы и снизит пожароопасность.
Исследование опубликовано в журнале npj Computational Materials и поддержано грантом РНФ.
Как и у литий-ионных аккумуляторов, у твердотельных есть положительный и отрицательный электроды, заряд между которыми переносится через электролит в процессе эксплуатации. Роль последнего в литий-ионных аккумуляторах выполняет проводящий ионы раствор. В твердотельных аккумуляторах электролит — это твердое вещество, проводящее ионы лития.
Твердотельные аккумуляторы пока не применяются в электромобилях, но автопроизводители соревнуются за первенство в их внедрении. Технология может увеличить запас хода примерно в полтора раза и значительно повысить пожаробезопасность. Одно из основных препятствий заключается в том, что ни один из существующих на сегодня твердых электролитов не удовлетворяет всем техническим требованиям. Поэтому поиск новых материалов продолжается.
«Мы показали, что с помощью графовых нейронных сетей можно выявлять новые материалы с высокой ионной проводимостью для твердотельных аккумуляторов следующего поколения. И делать это на порядки быстрее квантово-химических подходов — основного инструмента для теоретических предсказаний в материаловедении. Это значит, что разработка новых материалов для аккумуляторов может ускориться. Что мы и продемонстрировали, предсказав этими методами ряд защитных покрытий для твердотельных аккумуляторов», — рассказал первый автор работы, аспирант программы «Науки о материалах» и стажер-исследователь Центра энергетических технологий Сколтеха и младший научный сотрудник Института AIRI Артем Дембицкий.
Соавтор исследования, старший преподаватель Центра энергетических технологий Сколтеха Дмитрий Аксенов пояснил, зачем нужны защитные покрытия: «Металлический литий (анод) — очень сильный восстановитель, поэтому практически все существующие электролиты начинают восстанавливаться находясь с ним в контакте. А катодный материал — очень сильный окислитель. При окислении и восстановлении у электролитов разрушается структура, и это может привести либо к ухудшению рабочих характеристик аккумулятора, либо вовсе к короткому замыканию. Если добавить защитное покрытие, стабильное в контакте с катодом, анодом и электролитом, то этого можно избежать».
Алгоритмы машинного обучения позволяют ускорить расчеты ионной проводимости — ключевого свойства как для самого электролита, так и для его защитного покрытия. Вообще, скрининг материалов-кандидатов проходит поэтапно по целому ряду характеристик. В случае с материалом покрытия это — термодинамическая стабильность, электронная проводимость (должна быть низкой), электрохимическая стабильность, совместимость с электродами и электролитами, ионная проводимость и др. Причем расчет ионной проводимости является одним из наиболее ресурсоемких этапов. В начале отбора список кандидатов может включать десятки тысяч соединений-кандидатов, а в процессе отсева он сужается до нескольких лидеров.
Авторы работы выполнили поиск вариантов защитных покрытий для одного из наиболее перспективных электролитов твердотельных аккумуляторов — Li10GeP2S12. В результате ускоренного машинным обучением скрининга было выявлено несколько перспективных материалов защитного покрытия для этого электролита, например вещества с формулами Li3AlF6 и Li2ZnCl4.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Когда у круглых червей наступают голодные времена или им становится тесно, они объединяют свои усилия, чтобы поменять среду обитания. Забираются друг на друга, образуя живые башни, которые устремляются вверх, где нематоды могут прицепиться к проходящему мимо животному и с его помощью добраться до более изобильных мест. Долгое время ученые лишь догадывались о существовании таких живых башен. Теперь команда исследователей из Германии впервые зафиксировала их в дикой природе.
Жизнь в пещерах суровая, мягко выражаясь. Рыбы, населяющие подземные воды и никогда не видевшие солнечного света, приспособились к такой среде по-своему. Кто-то решил отказаться от глаз, кто-то от чешуи. Некоторые даже горб для чего-то вырастили. Китайские биологи рассказали о необычной пещерной рыбе, которая «носит» нечто вроде спасательного круга. Зачем? Похоже, чтобы не тратить много энергии.
Человечество много тысячелетий живет рядом с разными вредителями. Вездесущие тараканы, мыши, крысы, вши, комары, а также множество врагов сельского хозяйства. Особый научный интерес — выяснить, откуда эти спутники людей переселились и как давно с нами соседствуют. Энтомологи выяснили, что кровососущие постельные клопы живут с человеком более 10 тысяч лет, то есть, вероятно, дольше прочих насекомых-синантропов.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Звезда TOI-6894 — красный карлик, который в пять раз легче Солнца. Согласно теоретическим моделям, в протопланетном диске столь маломассивных звезд нет достаточно материала, чтобы впоследствии на их орбите сформировался газовый гигант, подобно Юпитеру. Однако международная команда астрономов с помощью наземных телескопов обнаружила несомненные признаки присутствия гигантской планеты вблизи TOI-6894. Открытие ставит под сомнение сложившееся представление о формировании планет.
Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.
Казахстанский Алматы — город контрастов, где горы соседствуют с урбанистическими пейзажами, а бизнес-центры — с историческими кварталами. Неизменным остается одно — пробки. Ежедневно сюда приезжает более 700 тысяч автомобилей из пригородов, при этом в самом мегаполисе зарегистрировано порядка 600 тысяч транспортных средств. В результате по улицам ежедневно движется более миллиона транспортных средств.
Мохаммад Х. Аттаран (Mohammad H. Attaran) — концепт-дизайнер и цифровой художник, работающий в Великобритании. В своих проектах он сочетает эстетику научной фантастики с элементами, вдохновлёнными природой, особенно анатомией насекомых. Его машины, мехи и транспортные средства выглядят одновременно инопланетно и инженерно достоверно. Ну или почти.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии