Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Умный алгоритм предскажет свойства магнитных материалов быстрее и точнее
Международная группа исследователей разработала методику, которая самостоятельно настраивает математическую модель магнитного взаимодействия. Новый алгоритм позволит более реалистично моделировать и проектировать материалы с требуемыми свойствами и предсказывать их свойства перед экспериментальной проверкой.

Результаты опубликованы в журнале Physical Review B. В последние годы активно развивается разработка машинно-обучаемых межатомных потенциалов. Они способны обеспечить быстроту и точность моделирования структуры и свойств материалов. Квантово-механические методы, например, теория функционала плотности дают высокую точность вычислений, однако требуют значительных вычислительных ресурсов и времени. Машинное обучение ускоряет вычисления больших систем, практически не уступая в точности. Одна из острых проблем в применении машинного обучения заключается в обеспечении физической достоверности.
В своей новой работе ученые из МФТИ, Сколтеха, ВШЭ и их иностранные коллеги предложили алгоритм автоматического обучения машинно-обучаемого межатомного потенциала с магнитными степенями свободы. Он ускоряет трудоемкие квантово-механические расчеты при исследовании парамагнитных материалов, при этом сохраняя их высокую точность.
Магнитные моменты становятся новой переменной, что усложняет обучение потенциала. Процесс моделирования с использованием магнитного межатомного потенциала состоит из двух этапов. На первом этапе оптимизируется величина магнитных моментов при фиксированных координатах атомов и параметрах решетки так, чтобы полная энергия системы была минимальна. На втором этапе магнитные моменты фиксируются и выполняется молекулярно-динамическое моделирование, в ходе которого изменяются координаты атомов и параметры решетки с учетом магнитного взаимодействия.
Кроме того, наличие магнитных моментов в функциональной форме потенциалов усложняет его обучение. Для решения этой задачи исследователи разработали алгоритм, который автоматически выбирает оптимальные конфигурации для обучающей выборки. Алгоритм отслеживает конфигурации, возникающие прямо в процессе моделирования с обучаемым потенциалом, и для отобранных конфигураций проводятся расчеты с помощью теории функционала плотности. Полученные данные добавляются в обучающую выборку, на основе которой происходит обучение потенциала.
«Главной особенностью разработанного нами потенциала является возможность отбора конфигураций прямо во время моделирования с обучаемым потенциалом, например, в ходе молекулярной динамики. Таким образом, появляется возможность автоматизировать процесс составления обучающей выборки, так как потенциал сам отбирает релевантные конфигурации для последующего их расчета с помощью теории функционала плотности и дообучения на них. Еще одной особенностью является учет магнитных моментов конфигураций при отборе в ходе активного обучения», — рассказал Иван Новиков, доцент факультета компьютерных наук НИУ ВШЭ, доцент кафедры химической физики функциональных материалов МФТИ, старший научный сотрудник Сколтеха.
Ученые протестировали новый подход на материале CrN с кубической кристаллической решеткой, подобной кристаллической решетке поваренной соли. Свойства этого материала хорошо известны, и поэтому он позволил определить надежность разработанного подхода. Кроме того, особенностью данного материала является то, что при температурах выше комнатной он находится в парамагнитном состоянии, что являлось дополнительным усложнением апробации предложенной методологии. Результаты показали, что алгоритм точно воспроизводит константы упругости и термические свойства. Рассчитанные фононные спектры согласуются с экспериментальными данными. Ученые отмечают, что разработанный алгоритм универсальный и его можно применять для других материалов.
Итак, предложенный подход показал высокую точность в воспроизведении механических, динамических и термических свойств парамагнитного CrN, демонстрируя ресурс для широкого применения в материаловедении.
«Мы планируем добавить неколлинеарный магнетизм в функциональную форму нашего потенциала. Также мы хотим разработать и апробировать метод предсказания температуры перехода в парамагнитное состояние с использованием метода Монте–Карло с переворотом магнитных моментов в ходе молекулярной динамики», — поделился планами на дальнейшие исследования Иван Новиков.
В работе участвовали ученые из МФТИ, Сколтеха, НИУ ВШЭ, Института химии твердого тела и механохимии СО РАН, Института биохимической физики имени Н. М. Эмануэля РАН, Института Материаловедения Кальяри (Италия), Центра материалов Леобен (Австрия).
Для разрыва связи между молекулами водорода понадобились золото, титан и ультрафиолетовое излучение. Полученный водород ученые использовали для преобразования углекислого газа в этилен.
Исследование показало, что длина ресниц ассоциируется у людей не только со здоровьем и привлекательностью, но и воспринимается как сигнал с сексуальным подтекстом.
Усеянный шипами нарост на лбу у самцов глубоководных рыб химер оказался настоящими зубами, растущими вне ротовой полости. Этот орган, аналогов которому не находили ранее, используется для удержания самки во время спаривания.
В данных космического телескопа «Джеймса Уэбба» ученые обнаружили объект, который может оказаться галактикой, сформировавшейся всего через 90 миллионов лет после Большого взрыва. Если открытие подтвердится, она станет абсолютным рекордсменом, побив рекорд предыдущего чемпиона почти на 200 миллионов лет. Однако исследователи осторожны — загадочный сигнал может иметь и другое, не менее интересное объяснение.
Для разрыва связи между молекулами водорода понадобились золото, титан и ультрафиолетовое излучение. Полученный водород ученые использовали для преобразования углекислого газа в этилен.
Глубоководная жизнь нам, сухопутным, кажется инопланетной. В недавней экспедиции морские биологи погрузились на дно пятого по глубине Курило-Камчатского желоба. Они преодолели 9500 метров толщи воды и встретили удивительно богатые сообщества организмов, живущих благодаря хемосинтезу. Тысячи километров дна покрывает беспозвоночная жизнь, которая питается благодаря бактериям, окисляющим метан. Naked Science поговорил с одним из авторов исследования.
Недавнее появление в Солнечной системе межзвездного объекта 3I/ATLAS вызвало новую волну обсуждения вопроса о том, как отличить комету или астероид от внеземного космического корабля либо другого артефакта, не созданного человечеством. Астрономы рассказали, что у искусственного объекта могут быть четыре характерные особенности.
Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии