Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Нейросети и образование: как безопасно внедрять ИИ в университетах
Исследователь Андрей Терников из НИУ ВШЭ в Санкт-Петербурге предложил пошаговую схему безопасного внедрения больших языковых моделей в университетах. Она учитывает типичные причины сбоев и помогает выстроить работу так, чтобы снизить риски. Такой подход позволяет вузам заранее выявлять уязвимости и безопасно запускать искусственный интеллект в обучении.
За последние два года большие языковые модели заметно изменили то, как в вузах учатся и оценивают знания. Студенты и преподаватели теперь активно используют искусственный интеллект. По последним данным, около 87% студентов применяют искусственный интеллект в учебе. Исследователи отмечают, что мы вошли в «постплагиатную» эпоху — время, когда привычная схема «сам написал или списал» больше не работает, в связи с чем важно описать допустимую помощь от искусственного интеллекта и границы ответственности студента. При этом регламенты и инфраструктура не всегда успевают за практикой, особенно в дистанционном формате с его ограничениями онлайн-контроля и высокими требованиями к конфиденциальности.
С ростом интереса к технологии выросли и риски. Модели могут «галлюцинировать» и выдавать неточные ответы, а масштабирование использования ИИ-инструментов в университетской среде добавляет технических и организационных задач. Примечательно, что анализ университетских политик в США показывает дисбаланс: более 90% вузов уже выпустили рекомендации по использованию генеративного ИИ для преподавателей и студентов, но менее 20% — для исследователей, сотрудников и администраторов. Это указывает на разрыв между практиками «на витрине» и внутренними регламентами исследовательских учреждений. Нужна понятная системная политика с четкими рекомендациями для преподавателей, студентов и администраторов.
Доцент Санкт-Петербургской школы экономики и менеджмента НИУ ВШЭ Андрей Терников проанализировал причины сбоев LLM (больших языковых моделей) в вузах — ситуаций, когда модель дает неточные ответы, спотыкается на формулировках, опирается на сомнительные данные, а проверить результат и честно оценить ее работу трудно из-за расплывчатых политик применения технологии. Статья опубликована в журнале Computer.
Исследователь использовал диаграмму Исикавы — причинно-следственную схему анализа проблем, которую еще называют «рыбьей костью»: она помогает разложить одну сложную проблему на группы подпроблем. В исследовании выделены шесть ветвей факторов: «Материалы», «Методы», «Машины», «Среда», «Люди», «Измерения».
Для каждой ветви автор описал типичные сбои, их влияние на учебный процесс и управленческие практики, а также предложил меры профилактики и интеграционные стратегии для университетских команд — от администраторов и ИТ-подразделений до преподавателей. Подход охватывает весь цикл: университетские регламенты, инфраструктуру, обучение персонала и вовлечение студентов. При этом он не требует значительных ресурсов и может внедряться поэтапно.
«Так, проблемы с приватностью данных можно решить, внедрив надежные протоколы безопасности и методы анонимизации. Технические ограничения частично решаются за счет облачных сервисов или открытых решений, а трудности во взаимодействии людей с искусственным интеллектом — за счет внедрения понятных правил и обучения», — отмечает исследователь.
Практическая логика внедрения строится на основе четырех последовательных шагов. Сначала университет проводит быстрый аудит текущей точки: где и как искусственный интеллект уже используется, какие данные попадают в модели, какие курсы и формы контроля уязвимы, где отсутствуют правила. Затем вводятся минимальные стандарты — короткие положения в учебных программах о допустимой помощи ИИ, протоколы работы с персональными данными и базовые требования к журналированию. После этого запускаются ограниченные пилоты на типовых курсах: настраивается «песочница», проверяются рубрики, собирается обратная связь от преподавателей и студентов. Наконец, успешные практики масштабируются: закрепляются роли академических руководителей, ИТ-подразделений и наставников, проводятся плановые обзоры версий моделей и регулярное обновление правил с опорой на накопленные данные.
«Мы переводим разговор об искусственном интеллекте из общих слов в понятный план, определяя приоритеты, роли и точки контроля. Если им следовать, вузы снижают риски и получают понятный эффект для студентов и преподавателей. Подход поэтапный и управляемый, его можно адаптировать под разные программы и масштабы. Он помогает выстроить прозрачные правила, укрепить доверие к оцениванию и сформировать культуру ответственного использования искусственного интеллекта», — резюмирует Андрей Терников.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
Вокруг звезды HD 131488, расположенной в созвездии Центавра (Centaurus) на расстоянии около 152 световых лет от Земли, впервые зафиксировали следы монооксида углерода (CO), который образуется при столкновениях и испарении комет. Находка открывает новую страницу в изучении формирования планетных систем.
Палеонтологи описали крупнейшее в мире скопление следов динозавров: более 16 000 вмятин на площади 7500 квадратных метров. Ученые считают, что эта территория была не просто местом случайных прогулок, а оживленной трассой, где динозавры организованно мигрировали вдоль берега древнего озера.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
