• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
20.11.2025, 10:59
НИУ ВШЭ
194

Нейросети и образование: как безопасно внедрять ИИ в университетах

❋ 4.5

Исследователь Андрей Терников из НИУ ВШЭ в Санкт-Петербурге предложил пошаговую схему безопасного внедрения больших языковых моделей в университетах. Она учитывает типичные причины сбоев и помогает выстроить работу так, чтобы снизить риски. Такой подход позволяет вузам заранее выявлять уязвимости и безопасно запускать искусственный интеллект в обучении.

Инструмент искусственного интеллекта ChatGPT / © OpenAI

За последние два года большие языковые модели заметно изменили то, как в вузах учатся и оценивают знания. Студенты и преподаватели теперь активно используют искусственный интеллект. По последним данным, около 87% студентов применяют искусственный интеллект в учебе. Исследователи отмечают, что мы вошли в «постплагиатную» эпоху — время, когда привычная схема «сам написал или списал» больше не работает, в связи с чем важно описать допустимую помощь от искусственного интеллекта и границы ответственности студента. При этом регламенты и инфраструктура не всегда успевают за практикой, особенно в дистанционном формате с его ограничениями онлайн-контроля и высокими требованиями к конфиденциальности.

С ростом интереса к технологии выросли и риски. Модели могут «галлюцинировать» и выдавать неточные ответы, а масштабирование использования ИИ-инструментов в университетской среде добавляет технических и организационных задач. Примечательно, что анализ университетских политик в США показывает дисбаланс: более 90% вузов уже выпустили рекомендации по использованию генеративного ИИ для преподавателей и студентов, но менее 20% — для исследователей, сотрудников и администраторов. Это указывает на разрыв между практиками «на витрине» и внутренними регламентами исследовательских учреждений. Нужна понятная системная политика с четкими рекомендациями для преподавателей, студентов и администраторов.

Доцент Санкт-Петербургской школы экономики и менеджмента НИУ ВШЭ Андрей Терников проанализировал причины сбоев LLM (больших языковых моделей) в вузах — ситуаций, когда модель дает неточные ответы, спотыкается на формулировках, опирается на сомнительные данные, а проверить результат и честно оценить ее работу трудно из-за расплывчатых политик применения технологии. Статья опубликована в журнале Computer

Исследователь использовал диаграмму Исикавы — причинно-следственную схему анализа проблем, которую еще называют «рыбьей костью»: она помогает разложить одну сложную проблему на группы подпроблем. В исследовании выделены шесть ветвей факторов: «Материалы», «Методы», «Машины», «Среда», «Люди», «Измерения». 

Для каждой ветви автор описал типичные сбои, их влияние на учебный процесс и управленческие практики, а также предложил меры профилактики и интеграционные стратегии для университетских команд — от администраторов и ИТ-подразделений до преподавателей. Подход охватывает весь цикл: университетские регламенты, инфраструктуру, обучение персонала и вовлечение студентов. При этом он не требует значительных ресурсов и может внедряться поэтапно. 

«Так, проблемы с приватностью данных можно решить, внедрив надежные протоколы безопасности и методы анонимизации. Технические ограничения частично решаются за счет облачных сервисов или открытых решений, а трудности во взаимодействии людей с искусственным интеллектом — за счет внедрения понятных правил и обучения», — отмечает исследователь. 

Практическая логика внедрения строится на основе четырех последовательных шагов. Сначала университет проводит быстрый аудит текущей точки: где и как искусственный интеллект уже используется, какие данные попадают в модели, какие курсы и формы контроля уязвимы, где отсутствуют правила. Затем вводятся минимальные стандарты — короткие положения в учебных программах о допустимой помощи ИИ, протоколы работы с персональными данными и базовые требования к журналированию. После этого запускаются ограниченные пилоты на типовых курсах: настраивается «песочница», проверяются рубрики, собирается обратная связь от преподавателей и студентов. Наконец, успешные практики масштабируются: закрепляются роли академических руководителей, ИТ-подразделений и наставников, проводятся плановые обзоры версий моделей и регулярное обновление правил с опорой на накопленные данные.

«Мы переводим разговор об искусственном интеллекте из общих слов в понятный план, определяя приоритеты, роли и точки контроля. Если им следовать, вузы снижают риски и получают понятный эффект для студентов и преподавателей. Подход поэтапный и управляемый, его можно адаптировать под разные программы и масштабы. Он помогает выстроить прозрачные правила, укрепить доверие к оцениванию и сформировать культуру ответственного использования искусственного интеллекта», — резюмирует Андрей Терников.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
17 февраля, 10:00
ФизТех

Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.

17 февраля, 14:25
Любовь С.

Пройдя перигелий 30 октября 2025 года — ближайшую к Солнцу точку на своей траектории, — 3I/ATLAS буквально взорвалась активностью: объект выбросил мощные потоки воды, монооксида углерода (СО), углекислого газа (СО₂) и органических молекул, превратившись в полноценную комету. Наблюдения с помощью космической обсерватории SPHEREx впервые позволили увидеть, как вещество из другой звездной системы начинает полностью испаряться под Солнцем, раскрывая свой изначальный химический состав.

17 февраля, 15:30
МГППУ

Пластичность мозга — его способность перестраиваться под влиянием приходящей информации. Это свойство необходимо для обучения и адаптации. Пластичность особенно высока в детском и юношеском возрасте, она помогает быстро выучить иностранный язык и освоить сложные моторные навыки (например, фигурное катание). Ресурс пластичности есть и у пожилых людей — благодаря альтернативным нейронным сетям они восстанавливаются после травмы или инсульта. Как выясняется, высокая пластичность это не всегда хорошо. Нарушение тонкого баланса между пластичностью и стабильностью может вести к неприятным последствиям, таким как хроническая боль, тиннитус (звон в ушах) и фобии.

12 февраля, 07:52
Адель Романова

Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.

12 февраля, 11:41
Александр Березин

На наземные растения, в основном деревья, приходится 80 процентов всей биомассы Земли, 450 миллиардов тонн сухого углерода и более двух триллионов тонн «живого веса». Поэтому идея сажать новые леса для связывания СО2 из атмосферы долго казалась логичной. Новые данные показали, что реальность заметно сложнее.

12 февраля, 08:19
Полина Меньшова

«Любить лишь можно только раз», — писал поэт Сергей Есенин, а герои культовых сериалов приходили к выводу, что «настоящая» влюбленность случается в жизни максимум дважды. Однако ни один из этих тезисов не подкреплен научными данными. Американские исследователи подошли к вопросу иначе: опросили более 10 тысяч человек и вывели среднее число сильных влюбленностей, возможных в течение жизни.

12 февраля, 07:52
Адель Романова

Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.

28 января, 10:50
Игорь Байдов

Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.

26 января, 14:26
Александр Березин

Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно