• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
Рубрика выходит при поддержке
31.12.2021
Мария Осетрова
4
13 241

Физики создали квантовую нейросеть, способную к обучению

6.4

Исследователи из США и Великобритании определили, что сверточные нейронные сети не страдают от проблемы «бесплодного плато» и гарантированно обучаемы. Такую архитектуру можно будет использовать для анализа данных при помощи квантовых компьютеров.

© Los Alamos National Laboratory
© Los Alamos National Laboratory

Квантовые нейронные сети вызывают ажиотаж вокруг возможности эффективного анализа квантовых данных. Но это волнение сдерживает проблема так называемого бесплодного плато, характерная для многих архитектур нейронных сетей. В процессе обучения нейронная сеть движется по ландшафту функции потерь, стараясь найти самую нижнюю точку. Попадая в «бесплодное плато», она не чувствует достаточного перепада высот и, соответственно, не может определить, в каком направлении двигаться дальше. В результате натренировать нейронную сеть не удается.

В своей работе ученые решили проверить, будут ли от проблемы «бесплодного плато» страдать сверточные нейронные сети. При их создании вдохновлялись строением зрительной коры головного мозга. Сверточные нейронные сети состоят из череды слоев с постепенно снижающейся размерностью, которые сохраняют ключевые особенности набора данных. Такую структуру нейросетей используют для самых разных задач — от анализа изображений до распознавания речи.

Авторам исследования удалось показать, что квантовые сверточные нейронные сети невосприимчивы к «бесплодному плато», в отличие от многих других архитектур нейронных сетей. Это особенно актуально при увеличении размерности данных. Ученые предполагают, что масштабируемые и обучаемые квантовые нейронные сети подойдут для анализа и моделирования материалов с высокотемпературной сврехпроводимостью, на которые одновременно влияют множество параметров: температура, давление, наличие примесей и разница фаз. Классическим компьютерам такие вычисления не под силу.

Кроме того, авторы работы представляют новую методику, основанную на графах, с помощью которой они анализировали чувствительность нейронной сети к «бесплодному плато». Исследователи предполагают, что она может быть полезна и в других приложениях.

Статья с подробным описанием структуры нейросети и доказательствами ее обучаемости опубликована в журнале Physical Review X.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
5 часов назад
Даниил Кузнецов

К осени 2022 года редакция Naked Science осмотрелась вокруг и решила, что настала пора запустить цикл статей об искусственном интеллекте. Мы начинаем с большой статьи, подзаголовком которой могла бы стать фраза «краткое введение в историю ИИ — от средневековых монахов до глубокого обучения».

Вчера, 20:31
Никита Логинов

Микробиологи решили одну из давних проблем пивоварения — сделали вкус пива устойчивым к высокому давлению при варке. Для этого пришлось углубиться в ДНК пивных дрожжей и отредактировать код, связанный с насыщенностью вкуса.

Вчера, 18:57
Анна Новиковская

Белая акула, героиня знаменитого фильма «Челюсти», обычно не воспринимается нами как чья-то добыча. Но у берегов Южной Африки эта зловещая рыба сама становится объектом охоты еще более грозных морских плотоядных — китов-косаток. Впервые ученым удалось заснять с воздуха это волнующее зрелище, отследив поведение как охотников, так и жертвы.

1 октября
Сергей Васильев

Моделирование указало, как менялся путь формирования и распада суперконтинентов на протяжении истории Земли. Это позволило ученым предсказать, как и где образуется следующий из них, снова объединив практически всю сушу планеты.

3 октября
Ольга Иванова

Американские исследователи узнали, что продолжительность жизни пенсионеров зависит не столько от наличия у них хронических заболеваний, сколько от таких простых факторов, как возможность ходить в магазин за продуктами, выполнять уборку в доме, показатели мелких частиц холестерина в крови и вредные привычки, которые они имели ранее.

2 октября
Редакция

Итальянский ботаник Стефано Манкузо — о преимуществах естественных отношений и о том, что бывает, когда люди нарушают хрупкое равновесие между биологическими видами. Naked Science печатает отрывок из книги Манкузо La nazione delle piante («Нация растений»).

16 сентября
Алиса Гаджиева

Геродот в своей «Истории» утверждал, что блоки для пирамиды Хеопса и соседних пирамид доставляли по воде. Но сегодня от Нила до пирамид слишком далеко. Исследование кернов, взятых в пойме реки, позволило понять, как именно решался сложнейший вопрос транспортировки такого строительного материала.

15 сентября
Никита Логинов

Светодиоды потребляют намного меньше энергии, чем традиционные газоразрядные лампы, что должно сократить парниковые выбросы. Но при этом светодиодное освещение угрожает здоровью жителей и разрушает местные экосистемы в городах и селах.

1 октября
Сергей Васильев

Моделирование указало, как менялся путь формирования и распада суперконтинентов на протяжении истории Земли. Это позволило ученым предсказать, как и где образуется следующий из них, снова объединив практически всю сушу планеты.

[miniorange_social_login]

Комментарии

4 Комментария

14.01.2022
-
0
+
На мой (пока непрофессиональный, к сожалению) взгляд, содержание статьи передано не совсем верно. Дело в том, что _любая_ квантовая нейросеть (QNN) _в принципе_ выходит из "бесплодного плато" и _в принципе_ рано или поздно достигает глобального минимума - за счет туннельного эффекта. Вопрос в том, насколько эффективно (быстро и с минимумом ресурсов) она это делает. Авторы предлагают для сверточных нейросетей (CQNN) новый метод (GRIM), который позволяет, используя рекурсию, построить граф для оптимальной (экономия ресурсов - кубитов, как понимаю) оценки функции ошибок и показывают (оценивая минимальные значения градиентов), что минимума можно достичь за разумное число итераций (т.е. реальное отсутствие "бесплодного плато").
01.01.2022
-
1
+
Автор похоже не понял про что пишет. Классические "Сверточные нейронные сети" и квантовые это совсем разные в плане обучения вещи. И классические сверточные сети в той же мере имеют проблемы с упомянутым плато, как и остальные сети - методы обучения одни и те же. А вот квантовые сети не нуждаются в градиенте для обучения и соответственно гораздо более перспективны.
    14.01.2022
    -
    0
    +
    По крайней мере в данном случае имхо это не так - в оригинальной статье вводится и анализируется минимум функции потерь градиентным спуском, при определенных предположениях. Вот цитата: "Here we provide a rigorous analysis of the scaling of the QCNN cost function gradient, under the following assumptions: (1) All the two-qubit unitaries in the QCNN form independent (and uncorrelated) 2-designs and (2) the cost function is linear with respect to the input density matrix."
Да да... Материалы со сверхпроводимостью, как же. Знаем мы для чего эти сети будут использоваться. Для слежки и сбора данных.
Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: