• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
Рубрика выходит при поддержке
31.12.2021
Мария Осетрова
4
13 752

Физики создали квантовую нейросеть, способную к обучению

6.4

Исследователи из США и Великобритании определили, что сверточные нейронные сети не страдают от проблемы «бесплодного плато» и гарантированно обучаемы. Такую архитектуру можно будет использовать для анализа данных при помощи квантовых компьютеров.

© Los Alamos National Laboratory
© Los Alamos National Laboratory / Автор: Pinaria Caprarius

Квантовые нейронные сети вызывают ажиотаж вокруг возможности эффективного анализа квантовых данных. Но это волнение сдерживает проблема так называемого бесплодного плато, характерная для многих архитектур нейронных сетей. В процессе обучения нейронная сеть движется по ландшафту функции потерь, стараясь найти самую нижнюю точку. Попадая в «бесплодное плато», она не чувствует достаточного перепада высот и, соответственно, не может определить, в каком направлении двигаться дальше. В результате натренировать нейронную сеть не удается.

В своей работе ученые решили проверить, будут ли от проблемы «бесплодного плато» страдать сверточные нейронные сети. При их создании вдохновлялись строением зрительной коры головного мозга. Сверточные нейронные сети состоят из череды слоев с постепенно снижающейся размерностью, которые сохраняют ключевые особенности набора данных. Такую структуру нейросетей используют для самых разных задач — от анализа изображений до распознавания речи.

Авторам исследования удалось показать, что квантовые сверточные нейронные сети невосприимчивы к «бесплодному плато», в отличие от многих других архитектур нейронных сетей. Это особенно актуально при увеличении размерности данных. Ученые предполагают, что масштабируемые и обучаемые квантовые нейронные сети подойдут для анализа и моделирования материалов с высокотемпературной сврехпроводимостью, на которые одновременно влияют множество параметров: температура, давление, наличие примесей и разница фаз. Классическим компьютерам такие вычисления не под силу.

Кроме того, авторы работы представляют новую методику, основанную на графах, с помощью которой они анализировали чувствительность нейронной сети к «бесплодному плато». Исследователи предполагают, что она может быть полезна и в других приложениях.

Статья с подробным описанием структуры нейросети и доказательствами ее обучаемости опубликована в журнале Physical Review X.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Вчера, 21:04
Елизавета Александрова

В шаровом скоплении Омега Центавра надеялась найти так называемую черную дыру промежуточной массы — нечто среднее между остающимися после «умирающих» звезд небольшими черными дырами и сверхмассивными, которые наблюдают в центрах галактик. Хотя такие черные дыры ищут давно, пока их поиски в космосе безуспешны. Похоже, их нет и в Омеге Центавра, зато есть целая система из других черных дыр.

Вчера, 19:03
Юлия Трепалина

Обширное исследование в США показало, что псов с безупречным поведением практически не бывает, и выявило наиболее распространенные недочеты, с которыми сталкиваются владельцы питомцев.

Позавчера, 14:30
ПНИПУ

Каждый, кто заботится о своем здоровье, уже слышал о модной биодобавке, благодаря которой, по словам производителей, волосы, суставы и кожа станут здоровее. Ученые ПНИПУ рассказали, так ли это на самом деле, из каких животных добывают коллаген, когда организм перестает его вырабатывать в нужном количестве и как это сказывается на здоровье человека, почему женщинам он нужнее, правда ли эффективна косметика с этим белком и к чему приводят инъекции на его основе?

8 декабря
Елена Кудрявцева

О том, где скрывается человеческое «я», что такое «знающие нейроны», какие страны наиболее активно развивают нейронауки и о том, почему нам важно признать наличие сознания у животных, мы поговорили с одним из самых выдающихся нейробиологов, директором Института перспективных исследований мозга МГУ имени М.В. Ломоносова, академиком Константином Анохиным.

7 декабря
Любовь

Одни из самых ярких объектов во Вселенной — квазары — представляют собой активные ядра галактик, питаемые центральными сверхмассивными черными дырами. Электромагнитное излучение, испускаемое этими объектами, позволяет астрономам изучать структуру Вселенной на ранних этапах ее развития, однако мощный радиоджет, исходящий от недавно обнаруженного экстремально яркого квазара J1601+3102, ставит под сомнение существующие представления о «космической заре».

6 декабря
Елизавета Александрова

На поверхности карликовой планеты между Марсом и Юпитером наблюдают сложные органические соединения. Когда их обнаружили в одном кратере, то ученые предположили, что это вещества с упавшего небесного тела. Теперь планетологи увидели признаки органики еще в 11 регионах Цереры и пришли к выводу, что это не импорт, а продукты собственного производства.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

28 ноября
Елизавета Александрова

Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.

25 ноября
Полина Меньшова

Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.

[miniorange_social_login]

Комментарии

4 Комментария
ai77 .
14.01.2022
-
0
+
На мой (пока непрофессиональный, к сожалению) взгляд, содержание статьи передано не совсем верно. Дело в том, что _любая_ квантовая нейросеть (QNN) _в принципе_ выходит из "бесплодного плато" и _в принципе_ рано или поздно достигает глобального минимума - за счет туннельного эффекта. Вопрос в том, насколько эффективно (быстро и с минимумом ресурсов) она это делает. Авторы предлагают для сверточных нейросетей (CQNN) новый метод (GRIM), который позволяет, используя рекурсию, построить граф для оптимальной (экономия ресурсов - кубитов, как понимаю) оценки функции ошибок и показывают (оценивая минимальные значения градиентов), что минимума можно достичь за разумное число итераций (т.е. реальное отсутствие "бесплодного плато").
Vladimir Fedosov
01.01.2022
-
0
+
Автор похоже не понял про что пишет. Классические "Сверточные нейронные сети" и квантовые это совсем разные в плане обучения вещи. И классические сверточные сети в той же мере имеют проблемы с упомянутым плато, как и остальные сети - методы обучения одни и те же. А вот квантовые сети не нуждаются в градиенте для обучения и соответственно гораздо более перспективны.
    ai77 .
    14.01.2022
    -
    0
    +
    По крайней мере в данном случае имхо это не так - в оригинальной статье вводится и анализируется минимум функции потерь градиентным спуском, при определенных предположениях. Вот цитата: "Here we provide a rigorous analysis of the scaling of the QCNN cost function gradient, under the following assumptions: (1) All the two-qubit unitaries in the QCNN form independent (and uncorrelated) 2-designs and (2) the cost function is linear with respect to the input density matrix."
Да да... Материалы со сверхпроводимостью, как же. Знаем мы для чего эти сети будут использоваться. Для слежки и сбора данных.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно