• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
Рубрика выходит при поддержке
31.12.2021
Мария Осетрова
4
13 746

Физики создали квантовую нейросеть, способную к обучению

6.4

Исследователи из США и Великобритании определили, что сверточные нейронные сети не страдают от проблемы «бесплодного плато» и гарантированно обучаемы. Такую архитектуру можно будет использовать для анализа данных при помощи квантовых компьютеров.

© Los Alamos National Laboratory
© Los Alamos National Laboratory / Автор: Pinaria Caprarius

Квантовые нейронные сети вызывают ажиотаж вокруг возможности эффективного анализа квантовых данных. Но это волнение сдерживает проблема так называемого бесплодного плато, характерная для многих архитектур нейронных сетей. В процессе обучения нейронная сеть движется по ландшафту функции потерь, стараясь найти самую нижнюю точку. Попадая в «бесплодное плато», она не чувствует достаточного перепада высот и, соответственно, не может определить, в каком направлении двигаться дальше. В результате натренировать нейронную сеть не удается.

В своей работе ученые решили проверить, будут ли от проблемы «бесплодного плато» страдать сверточные нейронные сети. При их создании вдохновлялись строением зрительной коры головного мозга. Сверточные нейронные сети состоят из череды слоев с постепенно снижающейся размерностью, которые сохраняют ключевые особенности набора данных. Такую структуру нейросетей используют для самых разных задач — от анализа изображений до распознавания речи.

Авторам исследования удалось показать, что квантовые сверточные нейронные сети невосприимчивы к «бесплодному плато», в отличие от многих других архитектур нейронных сетей. Это особенно актуально при увеличении размерности данных. Ученые предполагают, что масштабируемые и обучаемые квантовые нейронные сети подойдут для анализа и моделирования материалов с высокотемпературной сврехпроводимостью, на которые одновременно влияют множество параметров: температура, давление, наличие примесей и разница фаз. Классическим компьютерам такие вычисления не под силу.

Кроме того, авторы работы представляют новую методику, основанную на графах, с помощью которой они анализировали чувствительность нейронной сети к «бесплодному плато». Исследователи предполагают, что она может быть полезна и в других приложениях.

Статья с подробным описанием структуры нейросети и доказательствами ее обучаемости опубликована в журнале Physical Review X.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Позавчера, 20:37
Андрей

Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.

Вчера, 11:31
Березин Александр

Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.

Вчера, 11:45
Сеченовский Университет

Международная команда специалистов во главе с сотрудниками Центра математического моделирования в разработке лекарств Первого МГМУ имени И. М. Сеченова выявила наиболее перспективные направления для исследований в области лечения аутоиммунных заболеваний. Команда первой провела систематический обзор для поиска всех опубликованных в научных работах математических моделей аутоиммунных патологий и выявила недостаток моделей, которые могут значительно ускорить разработку новых лекарств.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

15 ноября
Елизавета Александрова

Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.

Позавчера, 14:21
Юлия Трепалина

Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.

30 октября
Елизавета Александрова

Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

31 октября
Татьяна

Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.

[miniorange_social_login]

Комментарии

4 Комментария
ai77 .
14.01.2022
-
0
+
На мой (пока непрофессиональный, к сожалению) взгляд, содержание статьи передано не совсем верно. Дело в том, что _любая_ квантовая нейросеть (QNN) _в принципе_ выходит из "бесплодного плато" и _в принципе_ рано или поздно достигает глобального минимума - за счет туннельного эффекта. Вопрос в том, насколько эффективно (быстро и с минимумом ресурсов) она это делает. Авторы предлагают для сверточных нейросетей (CQNN) новый метод (GRIM), который позволяет, используя рекурсию, построить граф для оптимальной (экономия ресурсов - кубитов, как понимаю) оценки функции ошибок и показывают (оценивая минимальные значения градиентов), что минимума можно достичь за разумное число итераций (т.е. реальное отсутствие "бесплодного плато").
Vladimir Fedosov
01.01.2022
-
0
+
Автор похоже не понял про что пишет. Классические "Сверточные нейронные сети" и квантовые это совсем разные в плане обучения вещи. И классические сверточные сети в той же мере имеют проблемы с упомянутым плато, как и остальные сети - методы обучения одни и те же. А вот квантовые сети не нуждаются в градиенте для обучения и соответственно гораздо более перспективны.
    ai77 .
    14.01.2022
    -
    0
    +
    По крайней мере в данном случае имхо это не так - в оригинальной статье вводится и анализируется минимум функции потерь градиентным спуском, при определенных предположениях. Вот цитата: "Here we provide a rigorous analysis of the scaling of the QCNN cost function gradient, under the following assumptions: (1) All the two-qubit unitaries in the QCNN form independent (and uncorrelated) 2-designs and (2) the cost function is linear with respect to the input density matrix."
Да да... Материалы со сверхпроводимостью, как же. Знаем мы для чего эти сети будут использоваться. Для слежки и сбора данных.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно