• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
Партнерский материал

Как стать Data Scientist’ом: рассказываем по-простому

Об этой профессии говорят и пишут все: рассказываем, чем занимаются Data Scientist’ы и легко ли стать одним из них с нуля.
Что вы знаете об этой профессии? / © District Data Labs

Еще лет десять назад о «науке больших данных» слышали только отдельные ученые, а сегодня data science называют «самой сексуальной профессией XXI века». Это неудивительно, ведь качественная работа с данными — ключ к успеху как для больших корпораций, так и для стартапов на несколько десятков человек.

Data Science применяется почти во всех сферах человеческой деятельности: в маркетинге — для повышения эффективности рекламы, в сельском хозяйстве — для прогнозирования цен на продукцию, в банковской сфере — для принятия решений о выдаче кредитов и ссуд. Список этот можно продолжать чуть ли не до бесконечности; важно, что специалисты, умеющие извлекать из огромных массивов информации полезные данные для бизнеса, нынче в цене.

Если вам хочется стать повелителем Big Data и научиться управлять информационными потоками, мы расскажем, что для этого нужно и как быстро и безболезненно влиться в новую для вас сферу. Было бы желание!

Что нужно знать

Тем, кто не связан со сферой IT, Data Science зачастую кажется чем-то вроде магии. Но для того, чтобы этим заниматься, не нужна ни волшебная палочка, ни полученый от предков дар. Достаточно ясной головы и усидчивости.

Итак, первым делом нужно знать язык — да не язык программирования, а английский. На нем написана большая часть документации, да и названия моделей, функций и команд в коде тоже взяты из него. Идеального британского произношения и словарного запаса в 20000 слов вам не понадобится, но научиться бегло читать придется однозначно.

Учиться придется много, но это окупится со временем / © Bardess Group

Второе необходимое условие — какой-то из языков программирования. Если у вас покрылся холодным потом лоб от школьных мучений с Pascal или C++, у нас есть хорошая новость. Основной инструмент для работы в Data Science — Python, один из самых простых для понимания и работы языков программирования. «Простое лучше, чем сложное, а сложное лучше, чем запутанное», гласят принципы Python. Так что не пугайтесь: это будет вам под силу.

Ну и третье — не последнее, но очень важное: придется освежить в голове знания основ высшей математики и статистики. Возможно, даже выучить что-то новое для себя. Если вы освоите эти три пункта хотя бы на твердую четверку — считайте, что вам открыт путь в мир больших данных и больших зарплат. Но это далеко не финиш: войдя в эту реку однажды, плыть по течению не получится. Нужно будет все время грести — учить новые фреймворки, читать документацию и знакомиться с инновационными подходами к данным.

Как учиться

Казалось бы, цели намечены, а задачи ясны — но с чего начать и как выстроить план обучения? Даже человека, который уже немного знаком с программированием и компьютерными науками, переизбыток фреймворков, туториалов и библиотек может попросту ввести в ступор. Обучающих видео и статей на разных ресурсах тоже не счесть — но нырять в это все в случайном порядке, то уже через пару дней можно и не вспомнить, зачем все это началось.

Структурированный подход — вещь неочевидная, но очень важная. Отдельные элементы нужных знаний можно сравнить с кирпичами, которые сами по себе просты. Но возвести из этих кирпичей хороший дом без подробного предварительного плана попросту невозможно: получится что-то не очень пригодное для жилья.

Сперва вы будете чувствовать себя как-то так. Но это пройдет / © My Modern Met

Поэтому если уж вы всерьез решили освоить эту специальность, то лучше не пытаться с наскоку пересмотреть все видео по теме на Youtube, а пройти структурированный курс. При этом не придется переживать о том, что вы чего-то не знаете: школа GeekBrains обучает Data Science с нуля — даже тех, для кого «питон» это такая змея, а «интеграл» — группа Бари Алибасова.

Программа этого курса, несмотря на ее объем и насыщенность информацией, достаточно проста для понимания: знания в ней даются от простых к сложным, от базовых понятий к продвинутым инструментам анализа. После обучения в GeekBrains у вас в голове будет по полочкам разложено все, что нужно для работы: как писать запросы к базам данных, как создавать облачные сервера, как искать информацию, тестировать гипотезы и находить корреляции в данных.

Что можно делать

Как мы уже говорили, Data Scientist’ы нужны почти в любых сферах деятельности. Поэтому выбор карьерных путей в этой профессии невероятно широк. Data Science — междисциплинарная наука, поэтому позволяет охватить сразу несколько жизненных интересов.

Data Science — море возможностей / © EdX Blog

Если вам интересна медицина – вы можете разрабатывать системы для предварительной постановки диагноза и моделирования развития пандемий. Следите за политикой – можете участвовать в создании программ для анализа и прогнозирования результатов выборов. Любите машины? Создавайте комплексы сбора данных для беспилотных автомобилей.

Немаловажно, что спрос на Data Scientist’ов постоянно растет, и без работы вы не останетесь. К тому же в GeekBrains гарантируют выпускникам своего курса трудоустройство по полученной специальности в компании с мировым именем. Для этого основная часть курса состоит из практических задач — чтобы вы, придя на новую работу, сразу могли заняться делом, а не «забывать все то, чему вас учили».

Начать обучение.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

11 сентября, 12:04
ПНИПУ

Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно