• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
Партнерский материал

Как стать Data Scientist’ом: рассказываем по-простому

Об этой профессии говорят и пишут все: рассказываем, чем занимаются Data Scientist’ы и легко ли стать одним из них с нуля.
Что вы знаете об этой профессии? / © District Data Labs

Еще лет десять назад о «науке больших данных» слышали только отдельные ученые, а сегодня data science называют «самой сексуальной профессией XXI века». Это неудивительно, ведь качественная работа с данными — ключ к успеху как для больших корпораций, так и для стартапов на несколько десятков человек.

Data Science применяется почти во всех сферах человеческой деятельности: в маркетинге — для повышения эффективности рекламы, в сельском хозяйстве — для прогнозирования цен на продукцию, в банковской сфере — для принятия решений о выдаче кредитов и ссуд. Список этот можно продолжать чуть ли не до бесконечности; важно, что специалисты, умеющие извлекать из огромных массивов информации полезные данные для бизнеса, нынче в цене.

Если вам хочется стать повелителем Big Data и научиться управлять информационными потоками, мы расскажем, что для этого нужно и как быстро и безболезненно влиться в новую для вас сферу. Было бы желание!

Что нужно знать

Тем, кто не связан со сферой IT, Data Science зачастую кажется чем-то вроде магии. Но для того, чтобы этим заниматься, не нужна ни волшебная палочка, ни полученый от предков дар. Достаточно ясной головы и усидчивости.

Итак, первым делом нужно знать язык — да не язык программирования, а английский. На нем написана большая часть документации, да и названия моделей, функций и команд в коде тоже взяты из него. Идеального британского произношения и словарного запаса в 20000 слов вам не понадобится, но научиться бегло читать придется однозначно.

Учиться придется много, но это окупится со временем / © Bardess Group

Второе необходимое условие — какой-то из языков программирования. Если у вас покрылся холодным потом лоб от школьных мучений с Pascal или C++, у нас есть хорошая новость. Основной инструмент для работы в Data Science — Python, один из самых простых для понимания и работы языков программирования. «Простое лучше, чем сложное, а сложное лучше, чем запутанное», гласят принципы Python. Так что не пугайтесь: это будет вам под силу.

Ну и третье — не последнее, но очень важное: придется освежить в голове знания основ высшей математики и статистики. Возможно, даже выучить что-то новое для себя. Если вы освоите эти три пункта хотя бы на твердую четверку — считайте, что вам открыт путь в мир больших данных и больших зарплат. Но это далеко не финиш: войдя в эту реку однажды, плыть по течению не получится. Нужно будет все время грести — учить новые фреймворки, читать документацию и знакомиться с инновационными подходами к данным.

Как учиться

Казалось бы, цели намечены, а задачи ясны — но с чего начать и как выстроить план обучения? Даже человека, который уже немного знаком с программированием и компьютерными науками, переизбыток фреймворков, туториалов и библиотек может попросту ввести в ступор. Обучающих видео и статей на разных ресурсах тоже не счесть — но нырять в это все в случайном порядке, то уже через пару дней можно и не вспомнить, зачем все это началось.

Структурированный подход — вещь неочевидная, но очень важная. Отдельные элементы нужных знаний можно сравнить с кирпичами, которые сами по себе просты. Но возвести из этих кирпичей хороший дом без подробного предварительного плана попросту невозможно: получится что-то не очень пригодное для жилья.

Сперва вы будете чувствовать себя как-то так. Но это пройдет / © My Modern Met

Поэтому если уж вы всерьез решили освоить эту специальность, то лучше не пытаться с наскоку пересмотреть все видео по теме на Youtube, а пройти структурированный курс. При этом не придется переживать о том, что вы чего-то не знаете: школа GeekBrains обучает Data Science с нуля — даже тех, для кого «питон» это такая змея, а «интеграл» — группа Бари Алибасова.

Программа этого курса, несмотря на ее объем и насыщенность информацией, достаточно проста для понимания: знания в ней даются от простых к сложным, от базовых понятий к продвинутым инструментам анализа. После обучения в GeekBrains у вас в голове будет по полочкам разложено все, что нужно для работы: как писать запросы к базам данных, как создавать облачные сервера, как искать информацию, тестировать гипотезы и находить корреляции в данных.

Что можно делать

Как мы уже говорили, Data Scientist’ы нужны почти в любых сферах деятельности. Поэтому выбор карьерных путей в этой профессии невероятно широк. Data Science — междисциплинарная наука, поэтому позволяет охватить сразу несколько жизненных интересов.

Data Science — море возможностей / © EdX Blog

Если вам интересна медицина – вы можете разрабатывать системы для предварительной постановки диагноза и моделирования развития пандемий. Следите за политикой – можете участвовать в создании программ для анализа и прогнозирования результатов выборов. Любите машины? Создавайте комплексы сбора данных для беспилотных автомобилей.

Немаловажно, что спрос на Data Scientist’ов постоянно растет, и без работы вы не останетесь. К тому же в GeekBrains гарантируют выпускникам своего курса трудоустройство по полученной специальности в компании с мировым именем. Для этого основная часть курса состоит из практических задач — чтобы вы, придя на новую работу, сразу могли заняться делом, а не «забывать все то, чему вас учили».

Начать обучение.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
2 февраля
Сергей Васильев

Считается, что неандертальцы жили в коллективах максимум в пару десятков особей. Однако на их стоянках обнаруживают останки исключительно крупных животных, добыть и съесть которых можно только командой, насчитывающей сотни человек.

Вчера, 13:41
Анна Новиковская

В черных дырах заключено множество тайн, и теперь астрономам удалось раскрыть одну из них: почему раскаленные диски вокруг них иногда мерцают.

Позавчера, 19:19
Василий Парфенов

«Недостаточно комковатая» — так описал обнаруженную аномалию один из авторов нового исследования. В нем на основе наблюдений сразу двух обсерваторий, работающих с разными диапазонами излучений, удалось создать карту распределения материи во Вселенной с беспрецедентной точностью. Благодаря этому выяснилось, что стандартная модель — главная современная теория мироустройства, описывающая все частицы, поля и взаимодействия, кроме гравитации — имеет все шансы быть неполной.

1 февраля
Анна Новиковская

Крупные хищники, вынужденные делить среду обитания с людьми, все чаще рассматривают двуногих соседей в качестве добычи. Теперь ученые назвали семейство млекопитающих, от клыков и когтей которых люди погибают чаще всего.

29 января
Анна Новиковская

Почти все исследования физической работоспособности проводились исключительно на мужчинах, поскольку ученые полагали, что женский менструальный цикл влияет на их способность к физической нагрузке. И только теперь они выяснили, что это не так.

2 февраля
Ольга Иванова

На примере людей, придерживающихся разных политических взглядов, американские исследователи выяснили, какие биологические механизмы стоят за феноменом разного отношения к одной и той же информации.

10 января
Алиса Гаджиева

Исследователи, изучающие систему обороны Великой стены, обнаружили следы более 130 секретных сквозных проходов и полагают, что это только начало.

25 января
Василий Парфенов

Пока фанаты SpaceX увлеченно следят за достижениями компании, астрономы грустно наблюдают, как их работа становится сложнее с каждым запуском спутников Starlink. Прогресс не проходит без жертв. Поэтому различные научные ассоциации ищут способы снизить негативное влияние множества новых рукотворных объектов в околоземном пространстве на качество данных, получаемых телескопами. Некоторые решения со стороны выглядят экстремальными — например, теперь лазеры для корректировки адаптивной оптики можно не выключать, если в поле зрения есть спутник Starlink. А это десятки ватт излучения!

5 января
Александра Медведева

Биологи показали, что нейронные сети гиппокампа, ответственные за пространственное восприятие, изменяются не линейным образом, а в соответствии с гиперболической геометрией. То есть мозг представляет пространство в форме расширяющихся песочных часов. Результаты исследования могут иметь значение для лучшего понимания различных нейродегенеративных расстройств.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: