• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
9 сентября, 16:54
Редакция Naked Science
7
2 206

Исследователи «Яндекса» представили способ повысить качество работы рекомендательных систем

❋ 4.7

Исследователи рекомендательных технологий «Яндекса» нашли способ, как повысить качество работы рекомендательных систем, чтобы они лучше понимали предпочтения пользователей, например, в товарах или контенте, и составляли более точные рекомендации. Для этого исследователи внедрили дополнительную корректировку в процесс обучения таких моделей.

Рекомендательные системы сегодня массовы, а их обучение превратилось в весьма ресурсоемкий процесс. Можно ли его облегчить? / © Вастрик, vas3k.blog

Внутреннее тестирование «Яндекса» показало, что новый подход позволяет повысить точность рекомендаций моделей в среднем на семь процентов по показателям качества ранжирования. «Яндекс» планирует использовать метод при обучении рекомендательных моделей собственных сервисов, в частности «Маркета». Метод будет полезен и другим компаниям, а также независимым разработчикам, работающим с рекомендательными системами в любой сфере — будь то соцсеть, интернет-магазин или стриминговый сервис.

О новом методе исследователи «Яндекса» рассказали в научной статье, которая была принята на ACM RecSys 2025. Это главная ежегодная международная конференция по рекомендательным системам, которая в этом году пройдет в девятнадцатый раз в Чехии. На конференцию также приняты работы крупнейших мировых технологических компаний — Amazon, Google и других.

Неточности при обучении рекомендательных систем

Рекомендательные системы обычно работают с миллионами объектов — текстами, аудио, видео, товарами. Это требует больших вычислительных ресурсов. Но сначала модель нужно обучить также на миллионах примеров, и для этого тоже необходимо много ресурсов. Чтобы сделать этот процесс менее ресурсоемким, во всем мире используют разные методы, которые заменяют сложные расчеты на более простые. Один из таких методов — sampled softmax, или алгоритм выборочного сэмплирования.

Его суть в том, что систему обучают различать предпочтения людей путем сравнения реализованных действий, которые пользователи совершили по отношению к конкретному объекту (положительные примеры), с нереализованными действиями, которых они не совершали относительно того же объекта (отрицательные примеры). В качестве объекта, например, может выступать определенный товар, тогда положительный пример — это добавление в корзину, а отрицательный — просмотр на сайте без добавления.

Обучение системы строится на том, что ей показывают положительный пример и отрицательные, — и благодаря этому модель начинает отличать одно от другого. Но можно показать ей миллионы отрицательных примеров из обучающего каталога, а можно лишь несколько случайно выбранных — в этом и заключается преимущество метода sampled softmax, которое позволяет экономить вычислительные ресурсы. Однако этот метод может привести к некачественному обучению из-за некорректного учета вероятностей — актуальна ли для пользователя рекомендация или нет. В результате модель будет давать неверные рекомендации.

Решение с помощью новой формулы

Для корректной работы метода требуется использовать обновленную формулу пересчета вероятностей того, что пользователь заинтересуется определенным товаром или контентом, — LogQ. Главная математическая трудность была в том, что существующие методы предполагают одинаковые правила отбора для всех примеров, а на практике положительные и отрицательные примеры попадают в данные по-разному. Из-за этого стандартные формулы начинают систематически искажать оценки, и требовалось специально скорректировать пересчет вероятностей, чтобы сделать модель объективнее.

Благодаря формуле модель при обучении начинает понимать, что реальные действия пользователя выбираются не случайным образом и явно задаются ей как положительные примеры, а остальные примеры — отрицательные и выбраны случайно. Это позволяет уменьшить смещения в оценках со стороны модели, то есть искажения, влияющие на точность ее финальных рекомендаций. В результате модель лучше понимает предпочтения пользователей и, как следствие, дает им более подходящие рекомендации.

Компании и разработчики могут использовать новую формулу при обучении любой рекомендательной системы. Для этого им не придется менять архитектуру своих моделей.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
23 октября, 08:02
Юлия Трепалина

По замыслу исследователей, в будущем нетрадиционный способ доставки кислорода в организм, который они называют «энтеральной вентиляцией», может стать спасением для пациентов с дыхательной недостаточностью. Эксперимент подтвердил безопасность процедуры для людей, что приближает ученых к реализации идеи.

23 октября, 14:35
Юлия Трепалина

В новом эксперименте исследователи из Финляндии проследили, как два типа питания повлияли на энергетический обмен веществ у псов породы стаффордширский бультерьер. Некоторые из биомаркеров, по которым судили об эффекте, в отношении собак применили впервые.

21 октября, 14:53
РТУ МИРЭА

Стремительное развитие искусственного интеллекта (ИИ) стало одним из ключевых факторов, определяющих глобальную технологическую и экономическую повестку. Для России, стремящейся занять достойное место в числе лидеров цифровой трансформации, ИИ представляет собой одновременно и огромную возможность, и серьезный вызов. Вопрос о том, является ли он двигателем прогресса или источником новых угроз, не имеет однозначного ответа, поскольку обе эти ипостаси тесно переплетены в современной реальности.

17 октября, 22:00
Любовь С.

В густой оранжевой дымке Титана, где температура опускается до минус 180 градусов Цельсия, происходят невозможные по земным меркам химические реакции: молекула циановодорода (HCN), рожденная в атмосфере из азота, метана и этана, могла сформировать кристаллы, объединяющие вещества противоположной природы.

21 октября, 14:25
Юлия Трепалина

Насколько счастливым нужно быть человеку, чтобы это начало благоприятно сказываться на продолжительности жизни? Ученые определили минимальный уровень субъективного ощущения благополучия, или счастья, преодолев который, оно становится фактором, позитивно влияющим на здоровье населения страны.

19 октября, 10:00
Любовь С.

Первый официальный документ, описывающий принцип действий в случае возможного контакта с внеземной цивилизацией, был принят Международной академией астронавтики (IAA) в 1989 году. С тех пор декларацию неоднократно пересматривали, а ее обновленную версию, адаптированную под реалии XXI века, ученые разработали совместно с участниками проекта по поиску инопланетян SETI.

13 октября, 11:10
Илья Гриднев

Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.

26 сентября, 11:41
ИИМК РАН

Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.

7 октября, 11:46
Игорь Байдов

Экспедиционное судно «Эндьюранс» более века называли самым прочным деревянным судном, когда-либо построенным человеком. Но находка, сделанная на дне моря, и изучение старых писем раскрыли неприятную правду. Легендарный «Эндьюранс» Шеклтона вовсе не был непобедимым левиафаном. Напротив, он имел фатальные недостатки, а капитан знал об этом еще до того, как ушел в роковое плавание к берегам Антарктиды.

[miniorange_social_login]

Комментарии

7 Комментариев
Стратегия очень простая: рекомендуем бегуну купить велосипед --> а с велосипедистами работать мы уже умеем!
Яндекс уважаю и пользуюсь, но по-прежнему считаю, что Google лучше.
Принципиальная ошибка в том, что разработчики Яндекса в этой статье кроме "болота" своих рекомендательных систем боятся нос высунуть в сторону. Эту задачу можно решать через глубокое обучение с подкреплением, ориентируясь не на правила, а на наработанный моделью опыт взаимодействия с реальными пользователями. Тут DRL-гибридная модель нужна. Тогда результат будет не 7%, а выше
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно