• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
06.07.2023, 14:24
СПбПУ (Политех)
439

В СПбПУ использовали Петербург в качестве модели для переноса реального мира в цифровое пространство

❋ 4.4

Исследователи НЦМУ «Передовые цифровые технологии» СПбПУ разработали алгоритм, который делает более эффективным перенос данных о геометрических характеристиках объектов физического мира в цифровое пространство в рамках решения задач цифровой трансформации промышленности. Для этого был создан алгоритм выделения отдельных объектов реального мира и их классификации.

В СПбПУ использовали Петербург в качестве модели для переноса реального мира в цифровое пространство
В СПбПУ использовали Петербург в качестве модели для переноса реального мира в цифровое пространство / ©Getty images / Автор: Milonia Larcius

Результаты разработки были представлены в публикации в научном журнале Remote Sensing. Автоматизированная обработка результатов лазерного сканирования объектов физического мира для создания цифровых образов объектов в виртуальном мире является актуальной задачей, над которой работают специалисты со всего мира. При работе с существующими промышленными объектами облака точек получаются огромных размеров и без специальных алгоритмов не обойтись. Перспективным является использование алгоритмов искусственного интеллекта. Для их использования необходимо создавать специальные наборы данных, которые будут использоваться для кластеризации и идентификации объектов облаках точек.

Исследователям НЦМУ СПбПУ удалось создать такой набор данных для облаков точек, полученных в результате мобильного лазерного сканирования. Отличительной особенностью данного набора является то, что он предназначен для распознавания объектов на основе универсальной схемы классификации. Соответствующие типы объектов представляют особый интерес для формирования цифрового представления существующих промышленных предприятий. При этом следует отметить, что существующие наборы данных облаков точек имеют разные схемы классификации, что делает невозможным их совместное использование для обучения и тестирования моделей глубокого обучения.

Предложенная специалистами НЦМУ СПбПУ находится в открытом доступе и может быть использована широким кругом исследователей. «Поскольку наша классификационная схема содержит набор из 10 универсальных категорий объектов, (здания, транспорт, растительность и др.) на которые можно разделить облака точек лазерного сканирования, ее можно использовать для разработки регламентированных наборов данных, которые в итоге можно использовать как единый набор данных для обучения моделей глубокого обучения», — прокомментировал особенность разработки соавтор исследования, ведущий научный сотрудник лаборатории «Моделирование технологических процессов и проектирование энергетического оборудования» НЦМУ СПбПУ Владимир Баденко.

Основываясь на собственной классификации, специалисты НЦМУ СПбПУ разработали гибридный набор, состоящий из реальных и синтетических данных, для сегментации объектов. Он содержит 34 миллиона реальных точек и 34 миллиона синтетических. Реальные данные были собраны на улице Комсомольской в Санкт-Петербурге при помощи мобильной картографическую системы Riegl VMX-450, имеющей два лазерных сканера, а также шесть цифровых камер высокого разрешения. Облака точек реального мира из набора данных описывают объекты типичной городской среды начала ХХ века, включая дома высотой до 50 метров (пять этажей) с историческими фасадами, заборами, столбами, линиями электропередач и объектами ландшафта (деревья, реклама, урны, скамейки и так далее). Данные также содержат множество динамических объектов, таких как пешеходы и движущиеся транспортные средства.

Синтетическая часть была сгенерирована из трех виртуальных сред городских районов, созданных из 3D-моделей. Ученые использовали объекты с реалистичной геометрией и размещали их внутри городских сцен так, чтобы макеты сцен соответствовали реальному миру. «Мы получили высокую оценку производительности нейронной сети Kernel Point (KP-FCNN), обученной на нашем наборе данных, — 92,56 процентов mIoU, что демонстрирует высокую эффективность использования моделей глубокого обучения для семантической сегментации плотных крупномасштабных облаков точек в соответствии с предложенной схемой классификации. Мы надеемся, что наш набор данных будет способствовать разработке моделей глубокого обучения для сегментации сложных объектов», — отметил Владимир Баденко.

Столь высокий результат ученые объясняют тем, что, во-первых, набор данных SP3D включает в себя широкий спектр классов объектов, а также в SP3D используются высококачественные аннотации, обеспечивающие точную и подробную маркировку объектов. В дальнейшем, авторы исследования планируют продолжить свои разработки в направлении разработки наборов данных для воздушного лазерного сканирования. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Санкт-Петербургский политехнический университет Петра Великого (СПбПУ) – один из ведущих технических вузов России. Политех реализует идею создания системы подготовки специалистов новой формации – «инженерный спецназ». Это высококвалифицированные кадры, способные выполнять задачи промышленности с учетом ее современных трендов. Среди партнеров СПбПУ – более 200 российских промышленных предприятий и более 100 иностранных предприятий. Политехнический университет имеет представительства в Китае и в Испании. В 2020 году Политехнический университет стал первым среди российских вузов в рейтинге TНE University Impact Rankings и получил статус научного центра мирового уровня «Передовые цифровые технологии».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

11 сентября, 12:04
ПНИПУ

Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно