Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В СПбПУ использовали Петербург в качестве модели для переноса реального мира в цифровое пространство
Исследователи НЦМУ «Передовые цифровые технологии» СПбПУ разработали алгоритм, который делает более эффективным перенос данных о геометрических характеристиках объектов физического мира в цифровое пространство в рамках решения задач цифровой трансформации промышленности. Для этого был создан алгоритм выделения отдельных объектов реального мира и их классификации.
Результаты разработки были представлены в публикации в научном журнале Remote Sensing. Автоматизированная обработка результатов лазерного сканирования объектов физического мира для создания цифровых образов объектов в виртуальном мире является актуальной задачей, над которой работают специалисты со всего мира. При работе с существующими промышленными объектами облака точек получаются огромных размеров и без специальных алгоритмов не обойтись. Перспективным является использование алгоритмов искусственного интеллекта. Для их использования необходимо создавать специальные наборы данных, которые будут использоваться для кластеризации и идентификации объектов облаках точек.
Исследователям НЦМУ СПбПУ удалось создать такой набор данных для облаков точек, полученных в результате мобильного лазерного сканирования. Отличительной особенностью данного набора является то, что он предназначен для распознавания объектов на основе универсальной схемы классификации. Соответствующие типы объектов представляют особый интерес для формирования цифрового представления существующих промышленных предприятий. При этом следует отметить, что существующие наборы данных облаков точек имеют разные схемы классификации, что делает невозможным их совместное использование для обучения и тестирования моделей глубокого обучения.
Предложенная специалистами НЦМУ СПбПУ находится в открытом доступе и может быть использована широким кругом исследователей. «Поскольку наша классификационная схема содержит набор из 10 универсальных категорий объектов, (здания, транспорт, растительность и др.) на которые можно разделить облака точек лазерного сканирования, ее можно использовать для разработки регламентированных наборов данных, которые в итоге можно использовать как единый набор данных для обучения моделей глубокого обучения», — прокомментировал особенность разработки соавтор исследования, ведущий научный сотрудник лаборатории «Моделирование технологических процессов и проектирование энергетического оборудования» НЦМУ СПбПУ Владимир Баденко.
Основываясь на собственной классификации, специалисты НЦМУ СПбПУ разработали гибридный набор, состоящий из реальных и синтетических данных, для сегментации объектов. Он содержит 34 миллиона реальных точек и 34 миллиона синтетических. Реальные данные были собраны на улице Комсомольской в Санкт-Петербурге при помощи мобильной картографическую системы Riegl VMX-450, имеющей два лазерных сканера, а также шесть цифровых камер высокого разрешения. Облака точек реального мира из набора данных описывают объекты типичной городской среды начала ХХ века, включая дома высотой до 50 метров (пять этажей) с историческими фасадами, заборами, столбами, линиями электропередач и объектами ландшафта (деревья, реклама, урны, скамейки и так далее). Данные также содержат множество динамических объектов, таких как пешеходы и движущиеся транспортные средства.
Синтетическая часть была сгенерирована из трех виртуальных сред городских районов, созданных из 3D-моделей. Ученые использовали объекты с реалистичной геометрией и размещали их внутри городских сцен так, чтобы макеты сцен соответствовали реальному миру. «Мы получили высокую оценку производительности нейронной сети Kernel Point (KP-FCNN), обученной на нашем наборе данных, — 92,56 процентов mIoU, что демонстрирует высокую эффективность использования моделей глубокого обучения для семантической сегментации плотных крупномасштабных облаков точек в соответствии с предложенной схемой классификации. Мы надеемся, что наш набор данных будет способствовать разработке моделей глубокого обучения для сегментации сложных объектов», — отметил Владимир Баденко.
Столь высокий результат ученые объясняют тем, что, во-первых, набор данных SP3D включает в себя широкий спектр классов объектов, а также в SP3D используются высококачественные аннотации, обеспечивающие точную и подробную маркировку объектов. В дальнейшем, авторы исследования планируют продолжить свои разработки в направлении разработки наборов данных для воздушного лазерного сканирования.
Ученые воспроизвели эффект шагов Шапиро, который раньше наблюдали только в твердотельных сверхпроводниках, в новой среде — в облаке атомов, охлажденных до температур, близких к абсолютному нулю.
Стандартная инструкция для мужчин перед сдачей спермы для ЭКО — воздержание от двух до семи дней. Этому правилу следуют миллионы пар по всему миру. Однако авторы нового исследования пересмотрели многолетние рекомендации. Они выяснили, что более короткий период воздержания может значительно повысить шансы на долгожданную беременность.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
