Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МФТИ продемонстрировали новые методы управления спиновыми волнами
Ученые из МФТИ и Российского квантового центра совместно с коллегами из Саратовского государственного университета и Мичиганского технологического университета продемонстрировали новые методы управления спиновыми волнами при помощи коротких лазерных импульсов в особым образом структурированных пленках феррит-граната. Найденное решение может быть востребовано для передачи информации с низкими энергозатратами (или энергопотреблением) и квантовых вычислений на основе спинов.
Статья опубликована в журнале Nano Letters. Спин (spin — вращение) — это собственный магнитный момент частицы, который всегда имеет направление. В намагниченных материалах наблюдается коллективная ориентация спинов в одном направлении — магнитный порядок. Локальное нарушение магнитного порядка сопровождается распространением спиновой волны по системе.
Распространение спиновой волны — магнонов — не сопровождается переносом вещества, как это происходит, например, при электрических токах. Благодаря этому передача информации спиновыми волнами происходит с гораздо меньшими термическими потерями по сравнению с традиционными электронными способами. Данные можно закодировать в фазу или амплитуду волны, а обработать их — с помощью интерференции волн или нелинейных эффектов.
Уже сейчас есть примеры создания простейших логических элементов на основе магнонов. Важная задача, которую необходимо решить для внедрения новой технологии — управление различными параметрами создаваемой волны. Оптический метод возбуждения имеет ряд преимуществ по сравнению с другими методами, и одно из них было продемонстрировано в этой научной работе.
Ученые возбуждали спиновые волны в особым образом структурированной пленке феррит-граната, модифицированного висмутом. Материал обладает уникальными оптомагнитными свойствами: низким магнитным затуханием, что обеспечивает распространение магнонов на большие расстояния даже при комнатной температуре, высокой оптической прозрачностью в ближнем инфракрасном диапазоне и высоким значением константы Верде.
Сама пленка представляет собой гладкий нижний слой со сформированной сверху одномерной решеткой с периодом 450 нм. Такая геометрия позволяет возбуждать тип колебаний (моды) со специальным распределением спинов в магноне, недоступном при работе с пленкой без модификаций. Для возбуждения прецессии намагниченности использовались линейно поляризованные лазерные импульсы накачки, характеристики которых влияют на спиновую динамику и тип возбуждаемых спиновых волн.
Важно отметить, что возбуждение волн было вызвано не термическими, а оптомагнитными эффектами. Изменения в образце определялись с помощью зондирующих импульсов длиной 250 фемтосекунд, которые могут быть направлены в необходимую точку с желаемой временной задержкой относительно импульса накачки. Такая установка позволяет определить динамику намагниченности в конкретной точке образца и после обработки дает информацию о спектральной частоте спиновой волны, ее типе и других характеристиках.
В отличие от предыдущих методов, разработанный учеными подход позволяет контролировать возбужденную волну с помощью нескольких параметров возбуждающего лазерного импульса. Помимо этого, геометрия наноструктурированной пленки позволяет локализовать центр возбуждения в пятне размером порядка 10 нм и делает возможным возбуждение различных типов спиновых волн, что не получилось бы при использовании обычной пленки.
Угол падения, поляризация и длина волны лазерных импульсов позволяют резонансно возбуждать волноводные моды образца, которые определяются параметрами наноструктуры, и в результате управлять видом возбуждаемых спиновых волн. Все параметры, которые задаются оптическим возбуждением, могут легко варьироваться по отдельности для получения необходимого результата.

«Нанофотоника открывает новые возможности в области сверхбыстрого магнетизма, — говорит Александр Чернов, заведующий лабораторией физики магнитных гетероструктур и спинтроники для энергосберегающих информационных технологий МФТИ. — Для создания практических приложений необходимо преодолеть субмикронный масштаб, увеличить скорость работы и многозадачность.
Мы продемонстрировали, как можно преодолеть данные ограничения при помощи наноструктурирования магнитного материала. Нам удалось локализовать свет в области размером десятки нанометров и эффективно возбуждать стоячие спиновые волны различных порядков. Данный тип спиновых волн позволяет устройствам на их основе работать на высоких частотах (до терагерцевых)».
В работе экспериментально были показаны увеличение эффективности запуска и возможность контроля спиновой динамики при ее оптическом возбуждении в специально созданной наноструктурированной пленке феррит-граната с помощью коротких лазерных импульсов. Это открывает новые возможности для решения таких проблем, как магнитная обработка данных и квантовые вычисления, основанные на когерентных спиновых колебаниях.
Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.
Ученые из МФТИ разработали и предложили новую систему единиц для электродинамики, способную примирить два главенствующих, но исторически несовместимых подхода. Эта компромиссная система, названная авторами физико-технической (ФТ), сохраняет практическое удобство Международной системы единиц (СИ), используемой инженерами по всему миру, и в то же время отражает теоретическую стройность и симметрию гауссовой системы (СГС), предпочитаемой физиками-теоретиками.
Международная группа ученых провела необычный эксперимент. Исследователи взяли образцы фекалий у детей с разными типами темперамента и пересадили их крысам. После этого животные начали вести себя по-разному: те, кто получил микробиоту от активных детей, стали смелее и больше исследовали новое пространство. Это открытие намекает на то, что бактерии, живущие в кишечнике с детства, в какой-то мере способны влиять на формирование личности.
Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.
Владельцы домашних животных нередко «очеловечивают» их и окружают заботой так же, как маленьких детей. Кажется, что такое внимание должно помочь питомцам прожить долгую счастливую жизнь и уберечь их от болезней, однако ученые заметили противоположный эффект. Его в новой книге описала международная команда ветеринаров.
Ученые из МФТИ разработали и предложили новую систему единиц для электродинамики, способную примирить два главенствующих, но исторически несовместимых подхода. Эта компромиссная система, названная авторами физико-технической (ФТ), сохраняет практическое удобство Международной системы единиц (СИ), используемой инженерами по всему миру, и в то же время отражает теоретическую стройность и симметрию гауссовой системы (СГС), предпочитаемой физиками-теоретиками.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
