• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
08.02.2018
ФизТех
112

Физики из МФТИ научились управлять спиновым диодом

4.1

Решение, которое предложили физики, позволяет в несколько раз увеличить диапазон частот, на которых устройство выпрямляет переменный ток, а чувствительность прибора оказывается сравнима с чувствительностью полупроводниковых диодов.

Физики из МФТИ научились управлять спиновым диодом / ©Пресс-служба МФТИ

Физики из МФТИ предложили схему спинового диода, «зажатого» между слоями различных антиферромагнетиков. Оказалось, что сопротивлением и резонансной частотой такого прибора можно управлять, «поворачивая» антиферромагнетики. Этот подход позволяет в несколько раз увеличить диапазон частот, на которых устройство выпрямляет переменный ток, а чувствительность прибора оказывается сравнима с чувствительностью полупроводниковых диодов. Статья опубликована в Physical Review B.

Константин Звездин, старший научный сотрудник лаборатории физики магнитных гетероструктур и спинтроники для энергосберегающих информационных технологий МФТИ, руководитель проекта «Спинтроника» Российского Квантового Центра: «Обычные спиновые диоды со свободными ферромагнитными слоями могут работать на фиксированных частотах, не превышающих двух-четырех гигагерц. В данной работе мы предложили схему спинового диода, в котором ферромагнитные слои связаны со слоями антиферромагнетиков, что позволяет расширить частотный диапазон устройства примерно до 10 гигагерц, причем без значительной потери чувствительности. Это существенно расширяет область возможного использования спиновых диодов, открывая для них такие приложения, как, например, всепогодное машинное зрение, основанное на микроволновой голографии».

Спиновый диод

Все современные электронные устройства – диоды, транзисторы, операционные усилители и так далее – работают с электрическим током. Другими словами, все они тем или иным образом управляют потоками заряженных частиц (электронов и дырок). Например, в полупроводниковом диоде соединение областей с повышенной концентрацией электронов и дырок (p-n-переход) приводит к тому, что прибор может пропускать электрический ток только в одну сторону. Используя эту особенность диодов, можно собрать выпрямитель – устройство, которое превращает переменный ток в постоянный.

Схема спинового диода: Угол φ отвечает углу между осями антиферромагнетиков, угол θ – углу между намагниченностями ферромагнитных слоев

В то же время помимо заряда электроны обладают еще одним важным свойством – у них есть спин. Спин – это чисто квантовая величина, аналогичная моменту импульса, которым обладают вращающиеся тела из классической механики. В обычном электрическом токе спины электронов направлены хаотично, однако их можно выстроить в одном направлении и получить спиновый ток. Наука, которая занимается изучением спиновых токов, называется «спинтроникой». В настоящее время ученые уже научились изготавливать спинтронные наногенераторы, детекторы микроволнового излучения и магнитного поля, которые превосходят свои электронные аналоги.

Аналогом полупроводникового диода в спинтронике является спиновый диод – прибор, который умеет выпрямлять проходящий через него ток. Спиновый диод представляет собой два тонких слоя ферромагнетиков, разделенных слоем диэлектрика, в основе его работы лежат эффекты туннельного магнетосопротивленияи вращения в результате переноса спина (spin-transfer torque effect). Если кратко, эти эффекты заключаются в следующем. При пропускании обычного тока через первый слой ферромагнетика спины электронов выстраиваются вдоль намагниченности ферромагнетика, то есть ток становится спиновым. Затем электроны туннелируют через диэлектрик и сталкиваются со вторым ферромагнитным слоем. В зависимости от угла между намагниченностью слоя и спинами электронов частицы лучше или хуже проходят через него – следовательно, сопротивление прибора зависит от ориентации магнитных слоев (первый эффект). Одновременно с этим электроны стараются повернуть второй слой, чтобы проходить через него было проще (второй эффект). Поэтому если пропускать через диод переменный ток, намагниченность его слоев – а следовательно, и сопротивление – будет колебаться одновременно с величиной тока, и в результате ток выпрямляется.

Физики из МФТИ научились управлять спиновым диодом
Рассчитанная учеными зависимость между углами θ и φ

Благодаря этим эффектам можно изготавливать спиновые диоды с чувствительностью более ста тысяч вольт на ватт, хотя максимальная чувствительность обычных полупроводниковых диодов Шоттки не превышает 3800 вольт на ватт. Чувствительность – это отношение напряжения выходящего постоянного тока к мощности прикладываемого переменного тока; грубо говоря, она описывает, насколько хорошо устройство выпрямляет ток. Тем не менее есть у спиновых диодов и недостатки. Например, их чувствительность сильно зависит от частоты переменного тока, резко возрастая около резонансного значения и оставаясь близкой к нулю вдали от него. Кроме того, резонансные частоты всех изготовленных ранее спиновых диодов не превышают двух гигагерц. В то же время для некоторых приложений – например, для микроволновой голографии – нужны диоды, работающие на бóльших частотах.

А если «зажать» антиферромагнетиком?

В данной работе ученые из МФТИ описывают способ, с помощью которого можно задавать резонансную частоту спинового диода при изготовлении, а также повысить рабочую частоту диодов. Для этого физики предлагают «зажать» диод между двумя антиферромагнитными слоями. Благодаря обменному закреплению (exchange pinning) слои ферромагнетиков и антиферромагнетиков оказываются связаны, что позволяет управлять углом между намагниченностями ферромагнетиков – а значит, сопротивлением и резонансной частотой прибора. Чтобы проверить работоспособность предложенной схемы, ученые численно смоделировали спиновый диод со слоями толщиной порядка нескольких нанометров, а затем исследовали его свойства.

Зависимость чувствительности диода от частоты переменного тока для разных значений угла φ. Величина постоянного тока составляет 99 процентов от критического (внешний график), либо равна нулю (внутренний график)
Зависимость чувствительности диода от частоты переменного тока для разных значений угла φ. Величина постоянного тока составляет 99 процентов от критического (внешний график), либо равна нулю (внутренний график)

Кратко поясним, что такое ферромагнетик и антиферромагнетик. В каждом из этих материалов спины атомов обладают дальним порядком – другими словами, на достаточно больших расстояниях структура материала повторяется. В ферромагнетиках спины всех атомов выстроены параллельно заданной оси, а в антиферромагнетиках – антипараллельно. Конечно, в жизни все немного сложнее, и в действительности при ненулевой температуре на эти картинки накладываются тепловые колебания, поворачивающие спины в случайных направлениях. При превышении определенной температуры дальний порядок полностью разрушается, и вещество становится парамагнетиком, в котором спины всех атомов направлены произвольно. Для ферромагнетиков такая температура называется точкой Кюри, для антиферромагнетиков – точкой Нееля. Кроме того, обычно спины выстраиваются вдоль заданной оси не во всем объеме вещества, а в макроскопических областях, называемых доменами.

Изучили что получили

Для начала ученые изучили, как угол между намагниченностями ферромагнитных слоев θ зависит от угла между осями антиферромагнетиков φ (AFM pinning angle), который можно контролировать на этапе изготовления диода, поворачивая антиферромагнетики. Вообще говоря, эти углы не совпадают, хотя и связаны друг с другом (смотрите график). Оказалось, что угол между намагниченностями можно изменять только в диапазоне от 110 до 170 градусов, причем в промежутке от 110 до 140 градусов зависимость является нелинейной. Тем не менее этого диапазона оказывается достаточно, чтобы контролировать свойства диода.

Затем исследователи выяснили, как зависит чувствительность диода от частоты переменного тока при фиксированном угле между намагниченностями слоев. Оказалось, что около резонансной частоты чувствительность резко возрастает, при этом достигая значений порядка тысячи вольт на ватт. Это значение меньше максимальной чувствительности изготовленных ранее спиновых диодов, однако все еще достаточно велико, чтобы сравниться с обычными полупроводниковыми диодами.

Гораздо более важным является то, что резонансную частоту нового диода можно изменять от 8,5 до 9,5 гигагерц, контролируя угол φ во время изготовления прибора. Впрочем, стоит отметить, что пока ученые рассмотрели предложенную схему только теоретически. Следующим шагом будет изготовление экспериментального образца и непосредственная проверка предсказанных свойств.

Ранее ученые из МФТИ научились закручивать магнитные вихри в спинтронных устройствах, образованных ферромагнетиком и топологическим изолятором. Топологический изолятор – это материал, который проводит электрический ток только по поверхности, а внутри является обычным изолятором.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
5 часов назад
Сергей Васильев

Несмотря на тусклое Солнце, атмосфера Юпитера раскаляется до сотен градусов благодаря не стихающим полярным сияниям. Волны аномальной жары быстро уносят тепло дальше к экватору.

4 часа назад
Анатолий Глянцев

Солнце несравнимо ближе к нам, чем любая другая звезда. До него всего восемь световых минут, тогда как до Проксимы Центавра — четыре с лишним световых года. Казалось бы, уж о Солнце-то мы должны знать все и даже больше. Однако не тут-то было. Naked Science рассказывает о загадках, которые все еще таит дневное светило.

12 часов назад
Анна Новиковская

У бумажных ос, как и у некоторых других общественных насекомых, есть рабочие особи и царица, чья единственная задача — принесение потомства. Если удалить царицу из гнезда, одна из оставшихся ос займет освободившееся место, но почему же тогда в присутствии царицы осы не «бунтуют» и не пытаются занять ее место? Ответ оказался удивительно простым.

23 сентября
Алиса Гаджиева

Ученые обнаружили, что древняя медная промышленность Израильского царства была организована так, что в итоге в ее центре не осталось ни растений, ни самой промышленности.

23 сентября
Анна Новиковская

За последние 50 лет на Аляске образовалось несколько новых термокарстовых озер, чья поверхность пузырится, выделяя в атмосферу метан — мощный парниковый газ. Поскольку такие озера образовались в результате таяния вечной мерзлоты, в ближайшем будущем их может стать еще больше.

23 сентября
Александр Березин

В инфопространство «утекло» нечто очень похожее на документ стратегического исследовательского центра RAND, адресованный в том числе ЦРУ. Автор этого документа утверждает, что конфликт на Украине полезен для Штатов, поскольку позволяет им «раздеть» своих экономических конкурентов — Германию и Францию, — попутно перекачав капитал из еврозоны в США. Действительно ли Вашингтону выгодны крупные финансово-экономические потери еврозоны, связанные с российско-украинским конфликтом? И если это так, то что это значит для России?

16 сентября
Алиса Гаджиева

Геродот в своей «Истории» утверждал, что блоки для пирамиды Хеопса и соседних пирамид доставляли по воде. Но сегодня от Нила до пирамид слишком далеко. Исследование кернов, взятых в пойме реки, позволило понять, как именно решался сложнейший вопрос транспортировки такого строительного материала.

15 сентября
Никита Логинов

Светодиоды потребляют намного меньше энергии, чем традиционные газоразрядные лампы, что должно сократить парниковые выбросы. Но при этом светодиодное освещение угрожает здоровью жителей и разрушает местные экосистемы в городах и селах.

3 сентября
Алиса Гаджиева

В «Кратких сообщениях Института археологии» опубликована статья Михаила Казанского и Анны Мастыковой, в которой авторы обобщили все известное из самых разных источников (от позднеантичных авторов до материалов археологических раскопок) о народе акациры. В результате они не только узнали, где те жили во время Великого переселения народов, но и предположили, как это племя нашло общий язык с соседями.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: