Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые выяснили, какие материалы могут победить фрустрацию
Исследователи из МФТИ, ЮНЦ РАН и ЮРГПУ (НПИ) имени М. И. Платова нашли 25 обобщенных структур магнитных кристаллов, которым «психотерапия для материалов» — химические или физические воздействия — может помочь победить фрустрацию («неопределенность» свойств из-за конкуренции и сосуществования разных внутренних взаимодействий) и стать материалами с выраженными и полезными характеристиками. Благодаря строгому и обобщенному результату можно будет эффективнее создавать материалы с заданными свойствами для разных приложений: от энергонезависимой и быстрой памяти до магнитной сенсорики.
Исследование опубликовано в журнале Acta Materialia. Особое место среди квантовых материалов — материалов с особыми свойствами из-за квантовых эффектов — занимают сложные соединения, в структурах которых имеется пирохлорная подрешетка. Это такая структура, в которой металлические атомы занимают позиции в вершинах тетраэдров. Они, соединяясь вершинами, образуют сеть тетраэдров.
Кристаллы, содержащие пирохлорную подрешетку, проявляют аномальные физические и химические свойства, такие как сверхпроводимость, колоссальное магнитосопротивление, магнитоэлектрический эффект, повышенная каталитическая активность, эффективные электродные свойства и прочие. Также эти кристаллы обладают разнообразными технологически значимыми свойствами: радиационно-защитными, фотокаталитическими, диэлектрическими, термобарьерными и многими другими.
Многие из уникальных свойств материалов с пирохлорной структурой связаны с поведением магнитной подсистемы. Если в вершины тетраэдров поместить атомы, обладающие спинами — собственными магнитными моментами, — получается такое состояние вещества, в котором одновременно сосуществуют и конкурируют различные взаимодействия: магнитные, электрические и деформационные.
При этом система испытывает геометрическую фрустрацию — по аналогии с психологической фрустрацией: из-за такой особой геометрии «решающий» характер материала не определен. Это дает возможность химически, с помощью добавок, или физически, с помощью внешнего воздействия, температуры или давления, влиять на взаимодействия свойств и получать материал с нужными характеристиками.

«Наша задача была в том, чтобы на наиболее абстрактном и фундаментальном уровне определить потенциальные свойства веществ с пирохлорной решеткой. Анализ, который мы провели, — строгий и получен без физических упрощений», — подчеркивает Михаил Таланов, ведущий научный сотрудник лаборатории терагерцовой спектроскопии МФТИ и основной автор статьи.
Подход ученых был основан на инструментах теории симметрии: магнитной кристаллографии, теории Ландау и теоретико-групповом анализе. Они использовали геометрические особенности решетки пирохлора, чтобы вывести все возможные модификации магнитно упорядоченных структур. То есть те общие «решения» с полезными свойствами, которые можно получить из исходной фрустрирующей и «неопределившейся» решетки пирохлора с помощью дополнительных воздействий.
Ученые нашли 25 модельных структур. Оказалось, что подавляющее большинство существующих материалов с пирохлорной подрешеткой можно описать найденными структурами. Чтобы прийти к этому выводу, исследователи сравнили результаты своих вычислений с базами данных экспериментально изученных веществ с пирохлорной подрешеткой.
Неожиданным результатом оказалось то, что 24 модельные структуры из 25 обладают скрытыми свойствами, обусловленными магнитной структурой, но напрямую с ней не связанными. Эти структуры образуются не только за счет магнитного упорядочения, но и за счет деформации решетки — такие структуры проявляют сегнетоэластические свойства. В случае жестких неорганических каркасов с пирохлорным типом строения спиновое упорядочение неотделимо от искажений решетки. Это означает, что спины электронов сильно связаны с атомным каркасом. Изменяя состав каркаса, можно рационально воздействовать на электронную подсистему кристалла. Этот результат открывает новые возможности для управления процессами в электронике, химии, химической технологии и, возможно, в биологии.
«Во многих работах при объяснении свойств материала коллеги не учитывают деформацию решетки в своих моделях магнитных взаимодействий. Наше исследование показало, что она есть почти во всех магнитно-упорядоченных структурах и ее необходимо учитывать», — поясняет Михаил Таланов.
Также два типа структур из найденных 25 — это мультиферроики, в которых связаны электрические и магнитные свойства. Например, такие материалы — основа будущих систем хранения информации за счет управления намагниченности электрическим полем или для разработки магнитных датчиков. Экспериментаторы могут опираться на результаты статьи, чтобы синтезировать вещества, ожидая нужных свойств у получаемых материалов. Исследование выполнено при поддержке Российского научного фонда.
Сотрудники кафедры физики твердого тела и наносистем НИЯУ МИФИ кандидат физико-математических наук, доцент Андрей Красавин и кандидат физико-математических наук Вячеслав Неверов нашли новый способ обнаружения (детектирования) квазичастиц, который может помочь разработке квантовых компьютеров. Ученые теоретически доказали, что добавление немагнитных примесей в сверхпроводник не мешает, а, наоборот, помогает обнаружить эти квазичастицы.
Пройдя перигелий 30 октября 2025 года — ближайшую к Солнцу точку на своей траектории, — 3I/ATLAS буквально взорвалась активностью: объект выбросил мощные потоки воды, монооксида углерода (СО), углекислого газа (СО₂) и органических молекул, превратившись в полноценную комету. Наблюдения с помощью космической обсерватории SPHEREx впервые позволили увидеть, как вещество из другой звездной системы начинает полностью испаряться под Солнцем, раскрывая свой изначальный химический состав.
Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
На наземные растения, в основном деревья, приходится 80 процентов всей биомассы Земли, 450 миллиардов тонн сухого углерода и более двух триллионов тонн «живого веса». Поэтому идея сажать новые леса для связывания СО2 из атмосферы долго казалась логичной. Новые данные показали, что реальность заметно сложнее.
«Любить лишь можно только раз», — писал поэт Сергей Есенин, а герои культовых сериалов приходили к выводу, что «настоящая» влюбленность случается в жизни максимум дважды. Однако ни один из этих тезисов не подкреплен научными данными. Американские исследователи подошли к вопросу иначе: опросили более 10 тысяч человек и вывели среднее число сильных влюбленностей, возможных в течение жизни.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
