Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработка ученых поможет в решении проблемы продовольствия
Факультет цифровой экономики и массовых коммуникаций МТУСИ в составе международной коллаборации принял участие в разработке системы компьютерного зрения в интеллектуальной отраслевой робототехнике, позволяющей существенно повысить производительность агробизнеса. В частности, специалисты обучили нейронную сеть распознавать несобранные яблоки в садах.
Сегодня наблюдается стремительный всплеск использования систем искусственного интеллекта в различных сферах экономики. Агробизнес является одной из сфер, подвергающихся быстрой цифровизации. Согласно отчету ООН, численность населения Земли будет быстро расти в ближайшие 30–50 лет; в частности, к 2050 году ожидается, что оно достигнет 10 миллиардов человек. При этом возникают вопросы об обеспечении такого количества жителей продовольствием.
Решение этой проблемы невозможно без повышения эффективности в сфере сельского хозяйства. В научных исследованиях и разработках ученых большое внимание уделяется аспектам цифровизации устойчивых агропродовольственных систем и прогнозирования рисков с учетом новой коронавирусной инфекции на Ближнем Востоке и в Северной Африке. Следует отметить, что наряду с потенциальными проблемами будущего дефицита продовольствия сегодня существует еще одна проблема, связанная с тем, что часть урожая остается неубранной. Важной причиной того, что несобранные плоды портятся в садах, на дачах и в агрохолдингах, является низкая окупаемость инвестиций.
Эти доводы позволяют сделать вывод, что одно из перспективных направлений развития аграрной отрасли — внедрение роботизированных решений, в том числе быстрого, качественного и надежного сбора урожая. При этом ключевую роль в таких роботах должна играть интеллектуальная система анализа изображений, которая разрабатывается, в частности, для задач идентификации и пространственного расположения плодов.
В научной разработке российских ученых для системы распознавания яблок в садах была выбрана архитектура нейронной сети YOLOv3, включающая класс apple в один из 80 распознаваемых классов. Решение этой задачи основано на методах компьютерной оптики и использовании камеры Intel Real Sense Depth Camera D415, которая, помимо регистрации оптического изображения в цветовых каналах яркости, также строит карту глубины.
Во-первых, необходимо обеспечить высокие значения метрик распознавания и обнаружения плодов. Во-вторых, требуется обеспечить низкие ошибки определения пространственного положения яблока относительно робота. В-третьих, требуются эффективные алгоритмы обхода урожая, позволяющие собирать плоды максимально без повреждений. Дальнейшее исследование было связано с работой нейронных сетей, используемых в задачах обнаружения и распознавания образов. Нейросети сегодня широко используются в агробизнесе, в том числе для распознавания плодов на дереве. В результате представлено аппаратно-программное решение задачи оценки координат яблока в реальном пространстве.
Отдельное внимание уделено исследованию ошибок, полученных в результате представленного решения. Следует отметить, что в разработке использовалась известная нейронная сеть, и исследователи не ставили задачу разработки и обучения алгоритма обнаружения яблок, а рассматривали новое приложение архитектуры YOLOv3, модифицированное под эту задачу.
«К научной новизне работы можно отнести представленный алгоритм совместного обнаружения, распознавания яблок и оценки их относительных координат. В результате исследования было предложено использовать нейронную сеть YOLOv3 для решения задачи обнаружения и распознавания изображений. В то же время класс apple был расширен некоторыми подобными объектами. Оптимальный порог вероятности получения высоких показателей точности и отзыва составляет 0,2–0,3.
При этом значение метрики Recall близко к 90 процентам, ложных срабатываний нет. Координаты объекта рассчитываются путем оптического преобразования относительных координат в пространстве пикселей изображения в реальные координаты с использованием карт глубины Intel Real Sense. Анализ показал, что среднеквадратические ошибки измерения координат невелики. Все ошибки составляют в среднем около 7–12 миллиметров.
Однако ошибка увеличивается с удалением объектов от камеры, что может быть связано с ее наклоном. В дальнейшем планируется дополнительно учитывать этот источник ошибок. Кроме того, средняя производительность составляет около 2,5 кадров в секунду», — рассказал Сергей Гатауллин из Московского технического университета связи и информатики. Прототип индустриального решения получил высокую оценку научного сообщества. Полный текст исследования опубликован в научном журнале Symmetry.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
Вокруг звезды HD 131488, расположенной в созвездии Центавра (Centaurus) на расстоянии около 152 световых лет от Земли, впервые зафиксировали следы монооксида углерода (CO), который образуется при столкновениях и испарении комет. Находка открывает новую страницу в изучении формирования планетных систем.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
