Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработка ученых поможет в решении проблемы продовольствия
Факультет цифровой экономики и массовых коммуникаций МТУСИ в составе международной коллаборации принял участие в разработке системы компьютерного зрения в интеллектуальной отраслевой робототехнике, позволяющей существенно повысить производительность агробизнеса. В частности, специалисты обучили нейронную сеть распознавать несобранные яблоки в садах.
Сегодня наблюдается стремительный всплеск использования систем искусственного интеллекта в различных сферах экономики. Агробизнес является одной из сфер, подвергающихся быстрой цифровизации. Согласно отчету ООН, численность населения Земли будет быстро расти в ближайшие 30–50 лет; в частности, к 2050 году ожидается, что оно достигнет 10 миллиардов человек. При этом возникают вопросы об обеспечении такого количества жителей продовольствием.
Решение этой проблемы невозможно без повышения эффективности в сфере сельского хозяйства. В научных исследованиях и разработках ученых большое внимание уделяется аспектам цифровизации устойчивых агропродовольственных систем и прогнозирования рисков с учетом новой коронавирусной инфекции на Ближнем Востоке и в Северной Африке. Следует отметить, что наряду с потенциальными проблемами будущего дефицита продовольствия сегодня существует еще одна проблема, связанная с тем, что часть урожая остается неубранной. Важной причиной того, что несобранные плоды портятся в садах, на дачах и в агрохолдингах, является низкая окупаемость инвестиций.
Эти доводы позволяют сделать вывод, что одно из перспективных направлений развития аграрной отрасли — внедрение роботизированных решений, в том числе быстрого, качественного и надежного сбора урожая. При этом ключевую роль в таких роботах должна играть интеллектуальная система анализа изображений, которая разрабатывается, в частности, для задач идентификации и пространственного расположения плодов.
В научной разработке российских ученых для системы распознавания яблок в садах была выбрана архитектура нейронной сети YOLOv3, включающая класс apple в один из 80 распознаваемых классов. Решение этой задачи основано на методах компьютерной оптики и использовании камеры Intel Real Sense Depth Camera D415, которая, помимо регистрации оптического изображения в цветовых каналах яркости, также строит карту глубины.
Во-первых, необходимо обеспечить высокие значения метрик распознавания и обнаружения плодов. Во-вторых, требуется обеспечить низкие ошибки определения пространственного положения яблока относительно робота. В-третьих, требуются эффективные алгоритмы обхода урожая, позволяющие собирать плоды максимально без повреждений. Дальнейшее исследование было связано с работой нейронных сетей, используемых в задачах обнаружения и распознавания образов. Нейросети сегодня широко используются в агробизнесе, в том числе для распознавания плодов на дереве. В результате представлено аппаратно-программное решение задачи оценки координат яблока в реальном пространстве.
Отдельное внимание уделено исследованию ошибок, полученных в результате представленного решения. Следует отметить, что в разработке использовалась известная нейронная сеть, и исследователи не ставили задачу разработки и обучения алгоритма обнаружения яблок, а рассматривали новое приложение архитектуры YOLOv3, модифицированное под эту задачу.
«К научной новизне работы можно отнести представленный алгоритм совместного обнаружения, распознавания яблок и оценки их относительных координат. В результате исследования было предложено использовать нейронную сеть YOLOv3 для решения задачи обнаружения и распознавания изображений. В то же время класс apple был расширен некоторыми подобными объектами. Оптимальный порог вероятности получения высоких показателей точности и отзыва составляет 0,2–0,3.
При этом значение метрики Recall близко к 90 процентам, ложных срабатываний нет. Координаты объекта рассчитываются путем оптического преобразования относительных координат в пространстве пикселей изображения в реальные координаты с использованием карт глубины Intel Real Sense. Анализ показал, что среднеквадратические ошибки измерения координат невелики. Все ошибки составляют в среднем около 7–12 миллиметров.
Однако ошибка увеличивается с удалением объектов от камеры, что может быть связано с ее наклоном. В дальнейшем планируется дополнительно учитывать этот источник ошибок. Кроме того, средняя производительность составляет около 2,5 кадров в секунду», — рассказал Сергей Гатауллин из Московского технического университета связи и информатики. Прототип индустриального решения получил высокую оценку научного сообщества. Полный текст исследования опубликован в научном журнале Symmetry.
Специалисты центра изучения недр «Геосфера» извлекают из образцов грунта все необходимые данные о действующих и перспективных месторождениях нефти. Рутинные операции с керном делегированы роботам. Умные помощники трудятся 24/7 и позволяют исследователям сосредоточиться на научных и технологических задачах.
Исследование НовГУ показало, что атлетическая гимнастика — один из самых эффективных способов борьбы с ожирением, в отличие, например, от бега. Тренировки с отягощениями не только помогают сжечь жир, но и укреплять мышцы, при этом щадя суставы и сердечно-сосудистую систему. Назван и оптимальный комплекс упражнений для таких людей: три силовые тренировки в неделю по 40–90 минут.
Сочетание уже подписанных решений конгресса и Белого дома на данный момент ведет к ситуации, когда после 1 октября 2025 года будет прекращено финансирование целого ряда активно работающих космических аппаратов. Речь идет об автоматических межпланетных станциях, разбросанных на девяти миллиардах километров. Все они технически вполне работоспособны и могли бы прослужить еще немало лет.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Исследование НовГУ показало, что атлетическая гимнастика — один из самых эффективных способов борьбы с ожирением, в отличие, например, от бега. Тренировки с отягощениями не только помогают сжечь жир, но и укреплять мышцы, при этом щадя суставы и сердечно-сосудистую систему. Назван и оптимальный комплекс упражнений для таких людей: три силовые тренировки в неделю по 40–90 минут.
Специалисты центра изучения недр «Геосфера» извлекают из образцов грунта все необходимые данные о действующих и перспективных месторождениях нефти. Рутинные операции с керном делегированы роботам. Умные помощники трудятся 24/7 и позволяют исследователям сосредоточиться на научных и технологических задачах.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии