Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Сколтехе квантовые компьютеры учат работать с «квантовыми данными»
Ученые Сколтеха показали, что квантовое машинное обучение может применяться для квантовых (а не классических) данных. Таким образом устраняется свойственный для классических приложений недостаток – низкая скорость работы, и закладываются основы для понимания вычислительных аспектов квантовых систем.
Результаты исследования опубликованы в журнале Physical Review A. В квантовых компьютерах для хранения и использования данных используются эффекты квантовой механики, о которых часто говорят, что они контринтуитивны.
Тем не менее, именно благодаря квантовым эффектам квантовые компьютеры смогут намного превзойти по производительности лучшие современные суперкомпьютеры. В 2019 году впервые в мире был продемонстрирован прототип решения, обладающего, по утверждению представителей компании Google, «квантовым вычислительным превосходством».
Квантовые алгоритмы были созданы для решения сложных и масштабных вычислительных задач, которые не под силу обычным компьютерам, в том числе появившихся совсем недавно задач квантового машинного обучения. В числе основоположников квантового машинного обучения − специалисты Лаборатории квантовой обработки информации Сколтеха, которую возглавляет один из авторов опубликованной статьи, профессор Джейкоб Биамонте.
«Методы машинного обучения стали мощным инструментом для выявления закономерностей в массивах данных. В квантовых системах формируются нетипичные закономерности, которые, как считается, не могут с той же эффективностью создаваться в классических системах. Неудивительно поэтому, что при решении задач машинного обучения квантовые компьютеры могут превзойти их классические аналоги», – отметил Биамонте.
В квантовом машинном обучении используется стандартный подход, который заключается в применении квантовых алгоритмов к классическим данным. Иначе говоря, прежде чем использовать квантовые эффекты, классические данные (представленные битовыми строками из единиц и нулей) необходимо сохранить или иным образом представить в квантовом процессоре, то есть решить так называемую проблему ввода данных. Ввод данных ограничивает ускорение вычислений, которое может происходить при использовании алгоритмов квантового машинного обучения.
Исследователям Сколтеха удалось объединить квантовое машинное обучение с квантовым моделированием, а затем применить этот подход к изучению фазовых переходов в квантовых магнитных задачах многих тел. При этом ученые проводили обучение квантовых нейронных сетей, используя в качестве данных только квантовые состояния.
Другими словами, авторы намеренно обошли проблему ввода данных, подавая на вход квантово-механические состояния вещества. Для представления подобных состояний с помощью стандартных (не квантовых) методов требуется такой объем памяти, который сегодня невозможно обеспечить с помощью существующих технических средств.
Первый автор статьи, аспирант Сколтеха Алексей Уваров считает, что выполненное исследование стало «шагом вперед на пути к пониманию возможностей квантовых устройств для решения задач машинного обучения». Для того чтобы проанализировать разработанный подход, исследователи применили целый ряд методов, используя в том числе некоторые идеи из области тензорных сетей и теории запутанности.
В работе также использована подпрограмма, известная как «вариационный квантовый алгоритм» (VQE), которая итеративно находит приближение к основному состоянию заданного квантового гамильтониана и на выходе выдает набор инструкций для подготовки квантового состояния на квантовом компьютере.
Однако для получения полного описания состояния, как правило, требуется экспоненциальный объем памяти, поэтому изучать свойства такого состояния лучше всего, предварительно подготовив его аппаратным способом. Описанный в статье обучающий алгоритм решает следующую задачу: имея заданное состояние VQE, дающее решение задачи основного состояния квантовой спиновой модели, установить, к какой из двух фаз вещества относится это состояние.
«Предлагаемые нами подходы разрабатывались в основном применительно к задачам физики плотных сред, тем не менее, квантовые алгоритмы могут также применяться для задач материаловедения и поиска новых лекарственных препаратов», – пояснил Биамонте. Исследование поддержано грантом РФФИ № 19-31-90159. С препринтом статьи можно ознакомиться бесплатно в базе arXiv.
Сегодня проблема рационального использования ресурсов в логистике становится ключевой, а значит, в транспортных системах приходится переосмысливать саму логику перевозок. Исследование белорусских инженеров из компании UST Inc. показывает, что недостаточно простого перехода на электротягу или возобновляемые источники энергии — важно уменьшить энергозатраты транспорта на единицу выполненной работы, то есть повысить удельную энергоэффективность. Подобный подход реализуется в транспортно-инфраструктурных комплексах uST.
В Передовой инженерной школе КНИТУ-КАИ (ПИШ КАИ) действуют временные научные коллективы (ВНК), работающие над реальными инженерными задачами. Одним из наиболее ярких результатов стала работа ВНК-4, созданного для развития технологий в области легких авиационных систем. Проект реализуется под руководством Никиты Сёмина, который также возглавляет специальное образовательное пространство (СОП) ПИШ КАИ «Авиамоделирование».
Ученые попытались обобщить все имеющиеся данные о возможном существовании жизни за пределами Земли, от предполагаемых древних окаменелостей в метеоритах до всевозможных сообщений об «инопланетянах». В итоге отсеивание всего слишком сомнительного позволило собрать небольшой список действительно интересных фактов. В этом рейтинге лидируют метеориты Мерчисон и Оргей.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Долгое время ученые полагали, что сотни гигантских статуй на острове Пасхи создали представители местной общины под руководством одного вождя. Однако авторы нового исследования поставили эту гипотезу под сомнение. Детальная трехмерная карта главного каменного карьера острова указала на более сложную картину. Вероятно, монументы были плодом творчества и соперничества небольших независимых групп.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
