Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработан эффективный «оптимистичный» алгоритм для обучения с подкреплением
Международный коллектив ученых из России, Франции и Германии с участием исследователей факультета компьютерных наук, Центра искусственного интеллекта ВШЭ и Научно-исследовательского института искусственного интеллекта AIRI разработали новый алгоритм обучения с подкреплением (Bayes-UCBVI). Это первый байесовский алгоритм, который имеет математическое доказательство эффективности и успешно протестирован на практике в Atari-играх.
Результат был представлен на конференции ICML-2022. Обучение с подкреплением — один из видов машинного обучения. Ключевая особенность этого метода, в отличие от классического машинного обучения, — постоянное взаимодействие агента (алгоритма) со средой, от которой он получает обратную связь в виде поощрений и наказаний. Цель агента — максимизировать сумму наград, которые среда дает ему за «правильное» взаимодействие.
Агент должен не просто пытаться понять, какие действия правильные, базируясь на текущих представлениях о среде. Он также должен исследовать эту среду: искать новые возможности, чтобы получить еще большую награду. Таким образом, появляется дилемма: исследование или использование известных данных.
Вопрос выбора между исследованием среды и использованием уже имеющихся знаний — один из главных для построения эффективных алгоритмов обучения с подкреплением. Разработанный исследователями алгоритм Bayes-UCBVI действует в парадигме оптимизма, то есть агент перепроверяет ценность действий, которые он совершает редко.
Принцип оптимизма приводит к тому, что агент выбирает какое-либо действие по одной из двух причин: либо он мало пробовал это делать, либо он достаточно точно уверен, что оно хорошее. Именно это обеспечивает исследование среды агентом.
«Представим, что возле вашего дома есть кофейня. Каждое утро вы покупаете там кофе и выпечку, которые вам нравятся. Но неподалеку открывается еще одно кафе, и вы думаете: а вдруг там и булочка вкуснее, и кофе более ароматный? На следующее утро перед вами дилемма: исследовать новое кафе или же пойти в проверенное место, где вы уверены в результате.
Вы решаете исследовать новое место, и кофе там оказался невкусный. Но вы попробовали кофе один раз и не знаете: возможно, просто последняя партия кофейных зерен была неудачной. Исходя из принципа оптимизма, вы дадите этой кофейне хотя бы еще один шанс», — поясняет один из авторов статьи, сотрудник Международной лаборатории стохастических алгоритмов и анализа многомерных данных и AIRI Даниил Тяпкин.
Исследователи отмечают, что, несмотря на теоретическую эффективность, принцип оптимизма трудно было использовать для создания практических алгоритмов обучения с подкреплением, которые будут работать для сложных окружений, таких как компьютерные игры, или для управления реальным роботом. Алгоритм, представленный учеными, позволил преодолеть пропасть между теорией и практикой.
Авторский коллектив впервые предложил обобщение этого алгоритма и протестировал его на 57 играх Atari. «Это первый алгоритм, обладающий теоретической и практической значимостью, — говорит один из авторов, заведующий Международной лабораторией стохастических алгоритмов и анализа многомерных данных Алексей Наумов. — Доказанные результаты Bayes-UCBVI играют большую роль для развития машинного обучения, они объединяют сообщества теоретиков и практиков. Использование этого алгоритма на практике позволит существенно ускорить процесс обучения искусственного интеллекта».
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
Могут ли истории о далеких галактиках и технологиях будущего объединить человечество? Согласно новому исследованию ученых из Китая, научная фантастика, вызывающая чувство благоговения, усиливает ощущение глобальной взаимосвязи между людьми.
Американские зоологи задались вопросом: как можно улучшить условия содержания птиц в неволе? Они добавили в лабораторные клетки подстилку из искусственной травы, чтобы птица могла питаться в знакомой среде, а не из стандартной миски. Опыты проводили на воробьях — исследователи несколько недель замеряли их реакцию на стресс. Результаты показали, что искусственная трава может улучшить состояние птиц в неволе, но переселять их потом не стоит.
Ученые из Сколтеха исследовали разнообразие молекул, которые могут образовываться из атомов кислорода и углерода. Помимо широко известных углекислого и угарного газов, моделирование обнаружило две сотни экзотических, но относительно стабильных соединений этих двух элементов, многие из которых не были описаны ранее. Этот класс веществ представляет интерес для исследований космоса, аккумуляторных технологий, биохимии и — неожиданным образом — для разработки промышленной взрывчатки и ракетного топлива. Как оказалось, некоторые из открытых веществ при распаде будут высвобождать более 75 процентов взрывной энергии тротила.
В РТУ МИРЭА разработали систему контроля и управления доступом (СКУД) на основе нейронных сетей для распознавания лиц. Эта технология предназначена для повышения безопасности на объектах с повышенными рисками, таких как критическая информационная инфраструктура в сферах энергетики, транспорта, здравоохранения, связи, финансов и промышленности, от которых зависит функционирование целых отраслей и страны.
Antares и Exlabs подписали соглашения о сотрудничестве в разработке космического зонда с ядерным двигателем. В ее рамках разработчики планируют вывести реактор в космос уже в 2020-х годах — впервые в XXI веке.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии