• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
19.10.2022, 11:00
НИУ ВШЭ
6 172

Разработан эффективный «оптимистичный» алгоритм для обучения с подкреплением

❋ 4.5

Международный коллектив ученых из России, Франции и Германии с участием исследователей факультета компьютерных наук, Центра искусственного интеллекта ВШЭ и Научно-исследовательского института искусственного интеллекта AIRI разработали новый алгоритм обучения с подкреплением (Bayes-UCBVI). Это первый байесовский алгоритм, который имеет математическое доказательство эффективности и успешно протестирован на практике в Atari-играх.

Разработан эффективный «оптимистичный» алгоритм для обучения с подкреплением / ©Getty images / Автор: Наталья Федосеева

Результат был представлен на конференции ICML-2022. Обучение с подкреплением — один из видов машинного обучения. Ключевая особенность этого метода, в отличие от классического машинного обучения, — постоянное взаимодействие агента (алгоритма) со средой, от которой он получает обратную связь в виде поощрений и наказаний. Цель агента — максимизировать сумму наград, которые среда дает ему за «правильное» взаимодействие.

Агент должен не просто пытаться понять, какие действия правильные, базируясь на текущих представлениях о среде. Он также должен исследовать эту среду: искать новые возможности, чтобы получить еще большую награду. Таким образом, появляется дилемма: исследование или использование известных данных.

Вопрос выбора между исследованием среды и использованием уже имеющихся знаний — один из главных для построения эффективных алгоритмов обучения с подкреплением. Разработанный исследователями алгоритм Bayes-UCBVI действует в парадигме оптимизма, то есть агент перепроверяет ценность действий, которые он совершает редко.

Принцип оптимизма приводит к тому, что агент выбирает какое-либо действие по одной из двух причин: либо он мало пробовал это делать, либо он достаточно точно уверен, что оно хорошее. Именно это обеспечивает исследование среды агентом.

«Представим, что возле вашего дома есть кофейня. Каждое утро вы покупаете там кофе и выпечку, которые вам нравятся. Но неподалеку открывается еще одно кафе, и вы думаете: а вдруг там и булочка вкуснее, и кофе более ароматный? На следующее утро перед вами дилемма: исследовать новое кафе или же пойти в проверенное место, где вы уверены в результате.

Вы решаете исследовать новое место, и кофе там оказался невкусный. Но вы попробовали кофе один раз и не знаете: возможно, просто последняя партия кофейных зерен была неудачной. Исходя из принципа оптимизма, вы дадите этой кофейне хотя бы еще один шанс», — поясняет один из авторов статьи, сотрудник Международной лаборатории стохастических алгоритмов и анализа многомерных данных и AIRI Даниил Тяпкин.

Исследователи отмечают, что, несмотря на теоретическую эффективность, принцип оптимизма трудно было использовать для создания практических алгоритмов обучения с подкреплением, которые будут работать для сложных окружений, таких как компьютерные игры, или для управления реальным роботом. Алгоритм, представленный учеными, позволил преодолеть пропасть между теорией и практикой.

Авторский коллектив впервые предложил обобщение этого алгоритма и протестировал его на 57 играх Atari. «Это первый алгоритм, обладающий теоретической и практической значимостью, — говорит один из авторов, заведующий Международной лабораторией стохастических алгоритмов и анализа многомерных данных Алексей Наумов. — Доказанные результаты Bayes-UCBVI играют большую роль для развития машинного обучения, они объединяют сообщества теоретиков и практиков. Использование этого алгоритма на практике позволит существенно ускорить процесс обучения искусственного интеллекта». 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
19 августа, 15:54
Елена Авдеева

К любопытным выводам привели наблюдения японских ученых за пестролицыми буревестниками. Оказалось, эти птицы испражняются в основном на лету, намеренно избегая такой возможности на поверхности воды. Очевидно, предположили исследователи, это облегчает движения в воздухе взрослым особям с добычей во рту.

20 августа, 08:00
Денис Яковлев

Люди, которые были на грани смерти, затем иногда рассказывают, как мчались навстречу необычайно яркому свету или видели всю свою жизнь, проносящуюся перед глазами. Эти переживания на первый взгляд напоминают галлюцинации под воздействием некоторых психоделиков. Но есть и существенные различия, обнаружили исследователи из Великобритании.

19 августа, 14:32
ФизТех

Физики из МФТИ и Национального исследовательского центра «Курчатовский институт» разработали новую теоретическую модель, которая разрешает многолетние противоречия в описании одной из самых опасных неустойчивостей плазмы в установках термоядерного синтеза. Предложенный подход позволяет точнее предсказывать поведение плазменного шнура и открывает путь к созданию более надежных систем управления для будущих термоядерных реакторов, включая международный проект ITER.

16 августа, 19:09
Адель Романова

Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.

18 августа, 11:11
Денис Яковлев

За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».

15 августа, 08:25
Любовь С.

Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.

25 июля, 07:47
Адель Романова

Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.

6 августа, 20:59
Татьяна Пичугина

Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.

22 июля, 14:44
ФизТех

Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет.  Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно