Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ПНИПУ разработали программу для прогнозирования характеристик сплавов
Титановые сплавы широко используют в аэрокосмической, медицинской и автомобильной промышленности из-за высокой прочности, малого веса и устойчивости к коррозии. Однако нехватка экспериментальных данных создает трудности с прогнозированием их характеристик, что замедляет и ухудшает производство. Ученые Пермского Политеха разработали программу для нейросетей, которая с высокой точностью предсказывает показатель шероховатости поверхности сплава. От него зависит износ детали при трении с другими механизмами или поверхностью, а также противостояние коррозии.
На разработку выдано свидетельство. Исследование проведено в рамках реализации программы стратегического академического лидерства «Приоритет-2030».
В последние годы методы машинного обучения широко применяются в различных отраслях производства. Одна из ключевых особенностей – необходимость наличия большого количества данных для обучения моделей. Но в реальных промышленных условиях сбор данных затруднен или становится финансово затратным. Особенно это актуально для высокоточных и сложных процессов, таких как обработка титановых сплавов резанием.
Так, например, в производстве двигателей сплав используется для изготовления деталей воздухосборника, корпуса, лопаток и дисков компрессора. Чтобы получить качественную поверхность, требуется оптимизировать режимы резания. Для этого необходима информация о влиянии различных параметров на качество обработки, чтобы спрогнозировать конечный результат. Предсказанием показателей шероховатости занимаются нейросети. Чтобы расширить обучающую выборку и уменьшить затраты на проведение экспериментов, применяется метод искусственного увеличения объема данных – аугментация.
Ученые Пермского Политеха исследовали регрессионную модель аугментации и на ее основе создали программу, которая решает проблему. Такие модели построены на ограниченном наборе информации. Они использовались для генерации дополнительных данных, тем самым создав расширенную базу из 2000 примеров. Полученные результаты применили для обучения нейросетей, предсказывающих шероховатость поверхности сплава ВТ6 (распространен в авиации и ракетостроении).
«Результаты показали, что нейронные сети, обученные на аугментированных данных, достигли высокой точности предсказаний по метрике MAPE равно 3,97 процента. Это говорит о том, что ошибка составила всего 3,97 процента от фактических значений. Другими словами, такой метод эффективен в условиях ограниченного объема исходных данных», – поясняет Вадим Данелян, аспирант кафедры вычислительной математики, механики и биомеханики, руководитель группы молодежного проектно-технологического бюро передовой инженерной школы «Высшая школа авиационного двигателестроения» ПНИПУ.
«Мы создали программу, которая не только подбирает необходимые режимы резания титановых сплавов ВТ6 для достижения нужного уровня шероховатости, но и может применяться при обработке сталей и других сплавов», – комментирует Андрей Клюев, кандидат физико-математических наук, доцент кафедры «Вычислительная математика, механика и биомеханика» ПНИПУ.
Применение программы ученых Пермского Политеха позволяет расширить выборку, реализовать корректный процесс обучения искусственных нейросетей и добиться высокой точности прогноза будущих характеристик сплава, в том числе показателя шероховатости, от которого зависит срок износа деталей. Предложенный подход можно адаптировать для других процессов обработки материалов в различных областях промышленного производства.
Ранее семь разных компаний заявили, что смогут забрать с Красной планеты капсулы с образцами, собранными марсоходом Perseverance. Теперь в этом соревновании неожиданно появился новый сильный игрок.
Слонам свойственны развитая мимика, умение сотрудничать и помогать друг другу, а также хорошая память. Ученые из Германии и Франции обнаружили, что эти животные способны узнать сотрудников зоопарка, которые работали с ними больше 10 лет назад.
Одна из самых первых галактик во Вселенной оказалась совсем не тем, что ученые ожидали увидеть всего через несколько сотен миллионов лет после Большого взрыва.
Ранее семь разных компаний заявили, что смогут забрать с Красной планеты капсулы с образцами, собранными марсоходом Perseverance. Теперь в этом соревновании неожиданно появился новый сильный игрок.
Одна из самых первых галактик во Вселенной оказалась совсем не тем, что ученые ожидали увидеть всего через несколько сотен миллионов лет после Большого взрыва.
Слонам свойственны развитая мимика, умение сотрудничать и помогать друг другу, а также хорошая память. Ученые из Германии и Франции обнаружили, что эти животные способны узнать сотрудников зоопарка, которые работали с ними больше 10 лет назад.
Марс не всегда был холодным и сухим, как сейчас. Все больше фактов говорит о том, что миллиарды лет назад там текли водные потоки. А значит, была плотная атмосфера, создающая парниковый эффект и поддерживающая воду в жидком состоянии. Примерно 3,5 миллиарда лет назад вода исчезла, газовая оболочка существенно поредела. Почему? Ответ буквально лежит на поверхности, выяснили американские геологи.
Инженеры из Белоруссии разработали альтернативный маршрут для более быстрой, безопасной и доступной перевозки грузов по сравнению с использованием Северного морского пути (СМП). Проект предусматривает организацию высокоскоростных грузопассажирских перевозок, в том числе транзитных, что станет альтернативой другим видам транспорта, в первую очередь авиации, за счет высокой скорости передвижения и уровня комфорта.
Исследовательская группа из NASA выяснила, как на поверхности Красной планеты образуются маленькие темные объекты в форме пауков. Новаторский эксперимент, проведенный в лабораторных условиях, позволил воссоздать процессы, которые наблюдаются на поверхности Марса в зимние и весенние месяцы.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии