Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ПНИПУ разработали программу для прогнозирования характеристик сплавов
Титановые сплавы широко используют в аэрокосмической, медицинской и автомобильной промышленности из-за высокой прочности, малого веса и устойчивости к коррозии. Однако нехватка экспериментальных данных создает трудности с прогнозированием их характеристик, что замедляет и ухудшает производство. Ученые Пермского Политеха разработали программу для нейросетей, которая с высокой точностью предсказывает показатель шероховатости поверхности сплава. От него зависит износ детали при трении с другими механизмами или поверхностью, а также противостояние коррозии.
На разработку выдано свидетельство. Исследование проведено в рамках реализации программы стратегического академического лидерства «Приоритет-2030».
В последние годы методы машинного обучения широко применяются в различных отраслях производства. Одна из ключевых особенностей – необходимость наличия большого количества данных для обучения моделей. Но в реальных промышленных условиях сбор данных затруднен или становится финансово затратным. Особенно это актуально для высокоточных и сложных процессов, таких как обработка титановых сплавов резанием.
Так, например, в производстве двигателей сплав используется для изготовления деталей воздухосборника, корпуса, лопаток и дисков компрессора. Чтобы получить качественную поверхность, требуется оптимизировать режимы резания. Для этого необходима информация о влиянии различных параметров на качество обработки, чтобы спрогнозировать конечный результат. Предсказанием показателей шероховатости занимаются нейросети. Чтобы расширить обучающую выборку и уменьшить затраты на проведение экспериментов, применяется метод искусственного увеличения объема данных – аугментация.
Ученые Пермского Политеха исследовали регрессионную модель аугментации и на ее основе создали программу, которая решает проблему. Такие модели построены на ограниченном наборе информации. Они использовались для генерации дополнительных данных, тем самым создав расширенную базу из 2000 примеров. Полученные результаты применили для обучения нейросетей, предсказывающих шероховатость поверхности сплава ВТ6 (распространен в авиации и ракетостроении).
«Результаты показали, что нейронные сети, обученные на аугментированных данных, достигли высокой точности предсказаний по метрике MAPE равно 3,97 процента. Это говорит о том, что ошибка составила всего 3,97 процента от фактических значений. Другими словами, такой метод эффективен в условиях ограниченного объема исходных данных», – поясняет Вадим Данелян, аспирант кафедры вычислительной математики, механики и биомеханики, руководитель группы молодежного проектно-технологического бюро передовой инженерной школы «Высшая школа авиационного двигателестроения» ПНИПУ.
«Мы создали программу, которая не только подбирает необходимые режимы резания титановых сплавов ВТ6 для достижения нужного уровня шероховатости, но и может применяться при обработке сталей и других сплавов», – комментирует Андрей Клюев, кандидат физико-математических наук, доцент кафедры «Вычислительная математика, механика и биомеханика» ПНИПУ.
Применение программы ученых Пермского Политеха позволяет расширить выборку, реализовать корректный процесс обучения искусственных нейросетей и добиться высокой точности прогноза будущих характеристик сплава, в том числе показателя шероховатости, от которого зависит срок износа деталей. Предложенный подход можно адаптировать для других процессов обработки материалов в различных областях промышленного производства.
Ученые из МФТИ и МГУ провели важное исследование фундаментальных законов природы, значительно расширив возможности одного из самых перспективных инструментов для исследования М-теории — гипотетической «теории всего». Они обобщили математический метод, известный как три-векторные деформации, на полные, без каких-либо упрощений, уравнения 11-мерной супергравитации в рамках исключительной теории поля. Результатом стали явные «рецепты» того, как можно систематически изменять (или «деформировать») геометрию и поля любого известного 11-мерного пространства-времени, чтобы получить новые, ранее неизвестные решения, подчиняющиеся тем же элегантным алгебраическим условиям, что и в более простых случаях.
Сегодня исполнилось 38 лет с момента первого летного испытания последнего советского космического гиганта — сверхтяжелой ракеты-носителя «Энергия». Ее запустили 15 мая 1987 года. Технически успешный проект дошел до полностью рабочего изделия, безупречно выполнившего два испытательных полета. Но так и не дошел до летной эксплуатации по причинам, от него уже не зависевшим. А запуск ракеты прошел тогда безупречно, хотя и не без особенностей — и одним из участников этих испытаний был автор Naked Science. Но обо всем по порядку.
Недавно физик Мелвин Вопсон предложил новый взгляд на гипотезу симуляции, впервые сформулированную шведским философом Ником Бостромом. В серии научных работ он утверждает, что информация обладает массой, а гравитация — не более чем побочный эффект цифровой Вселенной. Но насколько обоснованы его громкие заявления? И может ли «код Вселенной» объяснить реальность?
Мохаммад Х. Аттаран (Mohammad H. Attaran) — концепт-дизайнер и цифровой художник, работающий в Великобритании. В своих проектах он сочетает эстетику научной фантастики с элементами, вдохновлёнными природой, особенно анатомией насекомых. Его машины, мехи и транспортные средства выглядят одновременно инопланетно и инженерно достоверно. Ну или почти.
Исследуя генетическое происхождение мужского населения Нидерландов, ученые заметили географические особенности распределения гаплогрупп. Теперь, чтобы их объяснить, проанализировали Y-хромосомы сотен человек, начиная с раннего Средневековья, в сравнении с геномами современного населения страны. Авторы рассчитывали обнаружить непрерывность популяций, однако столкнулись с неожиданными сложностями.
Когда пальцы долго находятся в воде, кожа на них начинает морщиться. Из-за чего и по какому принципу это происходит, долгое время известно не было. Однако специалисты по биомедицине из США нашли ответы на оба вопроса.
Да, с волосами и люком все так. У космонавта Суниты Уильямс волосы на МКС плавали свободно, а у Кэти Пэрри и прочих в полете 14 апреля 2025 года — нет. Но это не значит, что суборбитального космического полета первого чисто женского экипажа не было или что он был инсценировкой. Причем, в общем-то, чтобы понять это, даже не нужно обладать специальными знаниями.
Многие знают, как популярны сувениры из окаменелостей — зубы древних акул или полированные панцири аммонитов. Но чем реже встречаются такие артефакты, тем они ценнее, то есть на них можно много заработать. И это проблема для палеонтологов. Американский специалист по тираннозаврам оценил ущерб, который нанесла коммерческая добыча костей T. rex и подсчитал среднюю цену таких образцов. Оказалось, больше половины найденных тирексов находится в частных руках, а значит, для науки они недоступны или ненадежны.
Мощнейшее отключение электроэнергии за последние 20 лет истории Европы случилось уже неделю назад, а испанские власти пока так и не объявили о его причинах. Это логично: как мы покажем ниже, ответ на вопрос, кто виноват, получится очень неполиткорректным. И, более того, противоречащим линии правящей в Испании партии. Но мы живем за тысячи километров от нее, поэтому можем себе позволить аполитичный анализ случившегося. Так что же произошло на самом деле и каковы наши шансы увидеть подобное у себя дома?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии