• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
30.01.2024, 11:54
Сколтех
221

Физики показали новый способ предсказания свойств магнитных сплавов с помощью машинного обучения

❋ 4.4

Ученые из Сколтеха и МФТИ с коллегами из Германии, Австрии и Норвегии предложили и верифицировали новый способ компьютерного моделирования магнитных сплавов с помощью машинно-обучаемых потенциалов. В методе в качестве переменных учитываются магнитные моменты атомов (магнитные степени свободы), благодаря чему он успешно предсказал энергию, механические и магнитные характеристики сплава железа и алюминия. Ученые планируют добавить в метод активное обучение и протестировать его на другом материале — нитриде хрома.

В виде шариков изображены атомы, стрелки — магнитные моменты атомов, а изогнутая поверхность показывает, что атомы расположены в наиболее энергетически выгодных положениях, и их спины тоже ориентированы наиболее энергетически выгодным образом / Павел Одинев / Пресс-служба Сколтеха
В виде шариков изображены атомы, стрелки — магнитные моменты атомов, а изогнутая поверхность показывает, что атомы расположены в наиболее энергетически выгодных положениях, и их спины тоже ориентированы наиболее энергетически выгодным образом / Павел Одинев / Пресс-служба Сколтеха / Автор: Plinia Abito

Работа опубликована в Scientific Reports. При компьютерном моделировании материалов нередко приходится искать баланс между скоростью и точностью расчетов. Наименьшие ошибки в предсказаниях свойств и структуры веществ дают квантово-механические методы, в которых рассчитывается электронная структура вещества. Наиболее популярный из них — теория функционала плотности (DFT), в котором вместо волновой функции для каждого электрона, используется обобщенная электронная плотность, что уменьшает количество переменных, упрощает описание и ускоряет вычисления.

Однако даже на суперкомпьютерах такими подходами можно моделировать системы размерами всего лишь в десятки и сотни атомов. Для расчетов более крупных систем применяют более упрощенные подходы через потенциалы взаимодействия, которые описывают силы между атомами и не учитывают электронную структуру. Из-за этого падает точность предсказаний свойств материала.

В последние годы было найдено промежуточное решение, когда можно сохранить «квантово-механическую точность» и на несколько порядков повысить скорость вычислений даже для систем из тысяч атомов. Одним из популярных методов стало машинное обучение, с помощью которого исследователи создают потенциалы взаимодействия, но обученные на результатах квантово-механических расчетов. Эти потенциалы лучше предсказывают параметры материалов, чем эмпирические аналоги.

Однако даже машинно-обученные потенциалы не всегда учитывают магнитные степени свободы атомов, что может приводить к ошибкам, например, при моделировании материалов с выраженным ферро-, антиферро- или парамагнетизмом.

Чтобы корректно предсказывать свойства подобных веществ, научная группа физиков и математиков из МФТИ и Сколтеха, обобщила свой метод построения машинно-обучаемых потенциалов MTP (Moment Tensor Potentials) до версии mMTP (magnetic MTP), в которой учтены магнитные степени свободы атомов. Ученые уже применяли новую версию, в том числе для предсказания энергии железа в парамагнитном и ферромагнитном состоянии. В новой работе они протестировали метод для двухкомпонентного сплава железо-алюминий.

Иван Новиков, старший научный сотрудник Сколковского института науки и технологий и доцент кафедры химической физики функциональных материалов МФТИ, комментирует: «Наш коллектив занимается разработкой машинно-обучаемых потенциалов, которые ускоряют приблизительно на пять порядков квантово-механические расчеты, нужные для описания свойств материалов.

В последние три года пошла разработка машинно-обучаемых потенциалов с магнитными степенями свободы, и мы тоже уже создали подобный потенциал — магнитный MTP и валидировали его для системы железа. В этой работе мы хотели провалидировать потенциал уже на двухкомпонентной системе и продемонстрировать алгоритм построения базы данных для обучения потенциала».

Исследователи собрали базу данных на основе результатов квантово-механических расчетов и по ней обучили пять mMTP-потенциалов. А затем проверили, как потенциалы предсказывают структуру и магнитные свойства сплава в зависимости от концентрации алюминия.

На первом и самом долгом этапе работы ученые собирали базу данных для обучения модели. Для квантово-механических расчетов выбрали системы из 16 атомов. Системы отличались по количеству и взаимному расположению («раскраске») атомов железа и алюминия. Полученные конфигурации приводили в состояние равновесия — релаксировали с помощью теории функционала плотности, то есть подбирались положения атомов, размеры кристаллической решетки и магнитные моменты, при которых конкретная структура имела минимальную энергию. На следующем шаге конфигурации возмущали: меняли размеры решетки и сдвигали атомы.

На финальном, третьем этапе возмущали уже магнитные моменты как для структур с первого шага, так и для второго, для этого использовали теорию функционала плотности, в которой есть ограничения типа равенств на магнитные моменты электронов — constrained DFT. После всех трех шагов была получена база из более 2 000 конфигураций с возмущениями и без.

Второй этап работы — обучение и верификация потенциалов mMTP — был самым сложным. На полученной выборке конфигураций исследователи обучали ансамбль из пяти потенциалов MTP. Затем исследователи сравнивали его предсказания равновесных параметров конфигураций (позиций атомов, магнитных моментов, размеров решетки) с квантово-механическими расчетами. Новый метод показал высокую точность и согласие с квантово-механическим моделированием для всех концентраций алюминия.

Результаты MTP также качественно совпали с экспериментом, когда ученые рассмотрели зависимость размеров решетки от содержания алюминия в сплаве. В пределах концентрации от 20 до 40 процента алюминия параметры решетки не менялись. Количественная разница связана в том числе с тем, что моделирование в отличие от опытов проводилось при абсолютном нуле температур.

В последней части работы ученые сравнили магнитные моменты сплавов, полученные квантово-механическим методом и с помощью mMTP. Результаты согласовались друг с другом и с теорией: если концентрация алюминия росла, сплав терял магнитные свойства. mMTP предсказал полную потерю ферромагнитизма при 50-процентном содержании алюминия в отличие от квантово-механических расчетов. Данное расхождение нуждается в дополнительном исследовании.

Далее ученые планируют добавить активное обучение в свой метод, чтобы отбор конфигураций системы, подходящих для обучения потенциала, происходил автоматически. Это позволит исследовать материалы при ненулевых температурах, а также парамагнитные системы.

Иван Новиков делится планами: «Я считаю, что, соединив наши знания и результаты статьи 2022 года про железо и эту статью про железо-алюминий, мы добавим и применим активное обучение и верифицируем mMTP для другого материала — нитрида хрома. В частности, сможем предсказать изменение удельной теплоемкости, рассмотреть парамагнитные состояния. Я сторонник подхода, что надо сначала провалидировать подробно методологию, которую разработали, а потом переходить в более практическую плоскость. Собственно говоря, наша научная работа по такому пути и развивалась: сначала валидировали MTP на прототипных системах, а сейчас мы уже подошли к предсказанию фазовых диаграмм сложных веществ».

Исследование поддержано грантом Российского научного фонда.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
23 ноября, 11:08
Максим Абдулаев

Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.

23 ноября, 15:12
Любовь С.

Наблюдая за галактикой CANUCS-LRD-z8.6 с помощью космической обсерватории «Джеймс Уэбб», астрономы обнаружили в ее центре сверхмассивную черную дыру. Хотя она существовала всего через 500 миллионов лет после Большого взрыва, ее масса оказалась рекордной для столь ранней эпохи.

24 ноября, 08:30
Любовь С.

Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.

21 ноября, 10:02
ПНИПУ

Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.

18 ноября, 18:24
Игорь Байдов

В темных лабиринтах подземного муравейника разыгрывается коварный сценарий, достойный политического триллера. Вместо того чтобы силой захватить трон, королева одного вида муравьев применяет хитрую тактику. Она проникает в чужую крепость и с помощью поддельного химического сигнала подстрекает верную стражу к свержению собственной повелительницы. Результат — жестокая казнь законной королевы и добровольное подчинение всего муравейника новой владычице.

20 ноября, 13:12
Полина Меньшова

Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

20 ноября, 13:12
Полина Меньшова

Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно