Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики показали новый способ предсказания свойств магнитных сплавов с помощью машинного обучения
Ученые из Сколтеха и МФТИ с коллегами из Германии, Австрии и Норвегии предложили и верифицировали новый способ компьютерного моделирования магнитных сплавов с помощью машинно-обучаемых потенциалов. В методе в качестве переменных учитываются магнитные моменты атомов (магнитные степени свободы), благодаря чему он успешно предсказал энергию, механические и магнитные характеристики сплава железа и алюминия. Ученые планируют добавить в метод активное обучение и протестировать его на другом материале — нитриде хрома.
Работа опубликована в Scientific Reports. При компьютерном моделировании материалов нередко приходится искать баланс между скоростью и точностью расчетов. Наименьшие ошибки в предсказаниях свойств и структуры веществ дают квантово-механические методы, в которых рассчитывается электронная структура вещества. Наиболее популярный из них — теория функционала плотности (DFT), в котором вместо волновой функции для каждого электрона, используется обобщенная электронная плотность, что уменьшает количество переменных, упрощает описание и ускоряет вычисления.
Однако даже на суперкомпьютерах такими подходами можно моделировать системы размерами всего лишь в десятки и сотни атомов. Для расчетов более крупных систем применяют более упрощенные подходы через потенциалы взаимодействия, которые описывают силы между атомами и не учитывают электронную структуру. Из-за этого падает точность предсказаний свойств материала.
В последние годы было найдено промежуточное решение, когда можно сохранить «квантово-механическую точность» и на несколько порядков повысить скорость вычислений даже для систем из тысяч атомов. Одним из популярных методов стало машинное обучение, с помощью которого исследователи создают потенциалы взаимодействия, но обученные на результатах квантово-механических расчетов. Эти потенциалы лучше предсказывают параметры материалов, чем эмпирические аналоги.
Однако даже машинно-обученные потенциалы не всегда учитывают магнитные степени свободы атомов, что может приводить к ошибкам, например, при моделировании материалов с выраженным ферро-, антиферро- или парамагнетизмом.
Чтобы корректно предсказывать свойства подобных веществ, научная группа физиков и математиков из МФТИ и Сколтеха, обобщила свой метод построения машинно-обучаемых потенциалов MTP (Moment Tensor Potentials) до версии mMTP (magnetic MTP), в которой учтены магнитные степени свободы атомов. Ученые уже применяли новую версию, в том числе для предсказания энергии железа в парамагнитном и ферромагнитном состоянии. В новой работе они протестировали метод для двухкомпонентного сплава железо-алюминий.
Иван Новиков, старший научный сотрудник Сколковского института науки и технологий и доцент кафедры химической физики функциональных материалов МФТИ, комментирует: «Наш коллектив занимается разработкой машинно-обучаемых потенциалов, которые ускоряют приблизительно на пять порядков квантово-механические расчеты, нужные для описания свойств материалов.
В последние три года пошла разработка машинно-обучаемых потенциалов с магнитными степенями свободы, и мы тоже уже создали подобный потенциал — магнитный MTP и валидировали его для системы железа. В этой работе мы хотели провалидировать потенциал уже на двухкомпонентной системе и продемонстрировать алгоритм построения базы данных для обучения потенциала».
Исследователи собрали базу данных на основе результатов квантово-механических расчетов и по ней обучили пять mMTP-потенциалов. А затем проверили, как потенциалы предсказывают структуру и магнитные свойства сплава в зависимости от концентрации алюминия.
На первом и самом долгом этапе работы ученые собирали базу данных для обучения модели. Для квантово-механических расчетов выбрали системы из 16 атомов. Системы отличались по количеству и взаимному расположению («раскраске») атомов железа и алюминия. Полученные конфигурации приводили в состояние равновесия — релаксировали с помощью теории функционала плотности, то есть подбирались положения атомов, размеры кристаллической решетки и магнитные моменты, при которых конкретная структура имела минимальную энергию. На следующем шаге конфигурации возмущали: меняли размеры решетки и сдвигали атомы.
На финальном, третьем этапе возмущали уже магнитные моменты как для структур с первого шага, так и для второго, для этого использовали теорию функционала плотности, в которой есть ограничения типа равенств на магнитные моменты электронов — constrained DFT. После всех трех шагов была получена база из более 2 000 конфигураций с возмущениями и без.
Второй этап работы — обучение и верификация потенциалов mMTP — был самым сложным. На полученной выборке конфигураций исследователи обучали ансамбль из пяти потенциалов MTP. Затем исследователи сравнивали его предсказания равновесных параметров конфигураций (позиций атомов, магнитных моментов, размеров решетки) с квантово-механическими расчетами. Новый метод показал высокую точность и согласие с квантово-механическим моделированием для всех концентраций алюминия.
Результаты MTP также качественно совпали с экспериментом, когда ученые рассмотрели зависимость размеров решетки от содержания алюминия в сплаве. В пределах концентрации от 20 до 40 процента алюминия параметры решетки не менялись. Количественная разница связана в том числе с тем, что моделирование в отличие от опытов проводилось при абсолютном нуле температур.
В последней части работы ученые сравнили магнитные моменты сплавов, полученные квантово-механическим методом и с помощью mMTP. Результаты согласовались друг с другом и с теорией: если концентрация алюминия росла, сплав терял магнитные свойства. mMTP предсказал полную потерю ферромагнитизма при 50-процентном содержании алюминия в отличие от квантово-механических расчетов. Данное расхождение нуждается в дополнительном исследовании.
Далее ученые планируют добавить активное обучение в свой метод, чтобы отбор конфигураций системы, подходящих для обучения потенциала, происходил автоматически. Это позволит исследовать материалы при ненулевых температурах, а также парамагнитные системы.
Иван Новиков делится планами: «Я считаю, что, соединив наши знания и результаты статьи 2022 года про железо и эту статью про железо-алюминий, мы добавим и применим активное обучение и верифицируем mMTP для другого материала — нитрида хрома. В частности, сможем предсказать изменение удельной теплоемкости, рассмотреть парамагнитные состояния. Я сторонник подхода, что надо сначала провалидировать подробно методологию, которую разработали, а потом переходить в более практическую плоскость. Собственно говоря, наша научная работа по такому пути и развивалась: сначала валидировали MTP на прототипных системах, а сейчас мы уже подошли к предсказанию фазовых диаграмм сложных веществ».
Исследование поддержано грантом Российского научного фонда.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
Презентации — универсальный инструмент для работы и учебы. Современные технологии позволяют создавать их в один клик, а интерактивные форматы делают выступления более динамичными и вовлекающими. Ученые Пермского Политеха усовершенствовали ранее разработанную платформу, добавив ИИ-функции: теперь нейросеть генерирует слайды, редактирует текст, создает изображения и интерактивные квизы.
Ученые из Сколтеха исследовали разнообразие молекул, которые могут образовываться из атомов кислорода и углерода. Помимо широко известных углекислого и угарного газов, моделирование обнаружило две сотни экзотических, но относительно стабильных соединений этих двух элементов, многие из которых не были описаны ранее. Этот класс веществ представляет интерес для исследований космоса, аккумуляторных технологий, биохимии и — неожиданным образом — для разработки промышленной взрывчатки и ракетного топлива. Как оказалось, некоторые из открытых веществ при распаде будут высвобождать более 75 процентов взрывной энергии тротила.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии