Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИУ ВШЭ научили нейросеть учиться на несколько порядков эффективнее
Нейросетевые генеративные модели в последние годы достигли впечатляющих результатов, однако важной задачей остается повышение эффективности их работы. Исследователям факультета компьютерных наук НИУ ВШЭ и Института искусственного интеллекта AIRI удалось оптимизировать обучение нейросети StyleGAN2, создающей реалистичные картинки, сократив число обучаемых параметров на четыре порядка. При этом качество полученных изображений осталось высоким.
Результаты работы представлены в докладе на конференции NeurIPS 2022. Современные модели умеют генерировать человеческие лица в таком качестве, что их не отличить от лиц настоящих людей, и в то же время эти лица — новые, то есть таких людей в мире никогда не существовало. Одним из многообещающих типов генеративных моделей стала GAN (Generative Adversarial Network) — генеративно-состязательная сеть. Это комбинация из двух нейронных сетей, одна из которых (генератор) производит образцы, а другая (дискриминатор) — старается отличить правильные образцы от неправильных. Так как генератор и дискриминатор имеют противоположные цели, между ними возникает антагонистическая игра, которая способствует быстрому достижению общей цели — созданию реалистичного изображения.
Основная проблема при обучении генеративных моделей — сбор большого количества изображений высокого качества. Для того чтобы научиться генерировать реалистичные лица в высоком разрешении, сети понадобится порядка 100 тысяч разнообразных лиц. К сожалению, собрать такой датасет сложно, особенно в некоторых ситуациях, когда, например, нужно получить портреты в стиле конкретного художника или персонажей из вселенной Pixar.

Однако даже в экстремальных случаях, когда доступно несколько примеров стилизованных изображений или только текстовые описания, есть методы для дообучения генеративной модели, которая изначально училась на большом датасете обычных изображений. «Ранее для адаптации генератора под новый домен (например, портреты в стиле Pixar) дообучали почти все параметры — это порядка 30 миллионов. Нашей целью было уменьшить их число, так как мы понимали, что не имеет смысла учить заново весь генератор, чтобы изменить только стиль созданного ранее изображения», — отметил Дмитрий Ветров, заведующий Центром глубинного обучения и байесовских методов НИУ ВШЭ и ведущий научный сотрудник AIRI.
В статье HyperDomainNet: Universal Domain Adaptation for Generative Adversarial Networks ученые Центра глубинного обучения и байесовских методов НИУ ВШЭ описали новый подход к дообучению генеративной модели StyleGAN2. Это генеративная нейросеть, которая преобразует случайный шум в реалистичную картинку. Исследователям удалось оптимизировать ее обучение, сократив число обучаемых параметров (весов) на четыре порядка за счет обучения дополнительного доменного вектора.
В архитектуре сети StyleGAN2 есть специальные трансформации (модуляции), с помощью которых входной случайный вектор контролирует семантические признаки выходного изображения, такие как пол, возраст и так далее. Ученые предложили обучать дополнительный вектор, который определяет домен выходных изображений через аналогичные модуляции.
«Если дополнительно обучать только такой доменный вектор, то домен генерируемых картинок меняется так же хорошо, как если бы мы дообучали все параметры нейронной сети. Это кардинально снижает число оптимизируемых параметров, так как размерность такого доменного вектора всего 6000, что на порядки меньше, чем 30 млн весов нашего генератора», — рассказал Айбек Аланов, первый автор статьи, стажер-исследователь Центра глубинного обучения и байесовских методов НИУ ВШЭ и научный сотрудник AIRI.
На основании полученных результатов ученые предложили первый метод мультидоменной адаптации, который позволяет адаптировать модель на несколько доменов сразу. Такая значительная оптимизация дообучения на новые домены сокращает время обучения и используемую память. С помощью такого метода можно обучить гиперсеть, которая имеет меньше параметров, чем исходный генератор, но хранит в себе сотни и даже тысячи новых доменов.
На юге Африки ученые обнаружили коллекцию небольших каменных стрел. С виду — обычные артефакты древнего человека. Но современные технологии позволили выявить их смертельный секрет. Эти наконечники, которым почти 60 тысяч лет, сохранили следы яда. Авторы нового исследования пришли к выводу, что древние охотники стали использовать яды намного раньше, чем считала наука.
Вопрос о том, можно ли считать чрезмерное увлечение физическими упражнениями аддиктивным поведением, остается дискуссионным. Ученые из Италии и Испании выяснили, что сильнее всего к такому компульсивному поведению склонны люди с чертами перфекционизма.
Биологи на примере птиц определили защитную функцию рыжего пигмента феомеланина, который ранее считали бесполезным и даже опасным из-за доказанной связи с развитием меланомы. Организм использовал его синтез для нейтрализации ядовитого избытка цистеина и выводил токсичные запасы серы в перья.
На юге Африки ученые обнаружили коллекцию небольших каменных стрел. С виду — обычные артефакты древнего человека. Но современные технологии позволили выявить их смертельный секрет. Эти наконечники, которым почти 60 тысяч лет, сохранили следы яда. Авторы нового исследования пришли к выводу, что древние охотники стали использовать яды намного раньше, чем считала наука.
Ученые десятилетиями ищут кости мамонтов, которые, по данным генетиков, могли дожить на материке до бронзового века. Очередная потенциальная находка с Аляски, считавшаяся остатками мамонтов, после проверки оказалась костями китов, умерших около двух тысяч лет назад.
Польша может экстрадировать на Украину российского археолога, заведующего сектором археологии Северного Причерноморья в отделе Античного мира Эрмитажа Александра Бутягина. Соответствующее ходатайство направила прокуратура в Окружной суд Варшавы.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
