Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИУ ВШЭ ускорили работу нейросети по распознаванию изображений
Профессор НИУ ВШЭ в Нижнем Новгороде Андрей Савченко разработал алгоритм, работающий на 40 процентов быстрее аналогов. При этом потери в точности составили не более 0,5-1 процентов. Это позволит ускорить работу систем видеонаблюдения в режиме реального времени.
Результаты исследования опубликованы в журнале Information Sciences. Для распознавания изображений используются сверточные нейронные сети, которые представляют собой последовательность слоев. В каждом слое есть вход и выход. На вход первого слоя поступает цифровое описание изображения, которое преобразуется в другой набор чисел на выход.
Новое описание поступает на вход следующего слоя и так далее, до тех пор, пока в последнем слое не будет предсказан класс объекта, изображенного на снимке: например, человек, кошка или стул. Для этого нейросеть обучается на изображениях, класс которых заранее известен. Чем больше различных изображений каждого класса в наборе данных, тем точнее будет работать обученная сеть.
Если примеров мало, используется так называемый алгоритм дообучения (fine-tuning) нейросети. Сеть предварительно обучается распознавать изображения из похожего большого набора данных, решающего исходную задачу. Например, при обучении распознаванию лиц или их атрибутов (эмоции, пол, возраст) сеть предварительно обучают идентифицировать знаменитостей по их фотографиям.
Затем полученная нейросеть дообучается распознавать изображения из доступного небольшого набора данных, например, идентифицировать лица членов семьи или родственников в домашних системах видеонаблюдения. Чем больше глубина (число) слоев в нейронной сети, тем точнее она работает, то есть правильнее предсказывает тип объекта на изображении. Но с увеличением числа слоев нейросеть распознает объекты дольше.
Автору исследования, профессору НИУ ВШЭ в Нижнем Новгороде Андрею Савченко удалось до 40 процентов ускорить работу дообученных глубоких сверточных нейросетей произвольного вида, состоящих из 90-780 слоев, при этом контролируя потери в точности — не более 0,5-1 процента. Ученый опирался на статистические методы последовательного анализа и множественных сравнений (множественной проверки гипотез).
«Решение в задаче распознавания изображений принимает классификатор — специальный математический алгоритм, который получает на вход массив чисел (характерные признаки изображения), а на выходе выдает предсказание о том, к какому классу относится изображенный объект. Классификатор можно применять, подавая ему на вход выходы любого слоя нейронной сети. Для распознавания «простых» изображений классификатору достаточно проанализировать данные (выходы) из первых слоев нейронной сети.
Не нужно дальше терять время, если мы уже уверены в надежности принятого решения. Для «сложных» картинок первых слоев явно недостаточно — нужно переходить к следующим. Поэтому в нейронную сеть были добавлены классификаторы на несколько промежуточных слоев. Они в зависимости от сложности входного изображения решали, продолжать распознавание или завершить. Так как в такой процедуре важно контролировать ошибки, я применил теорию множественных сравнений: ввел много гипотез, на каком промежуточном слое остановиться, и последовательно проверял эти гипотезы», — объяснил Андрей Савченко.
Если уже первый классификатор выдавал решение, которое считалось процедурой множественной проверки гипотез надежным, алгоритм останавливался. Если же решение объявлялось не надежным, вычисления в нейросети продолжались до следующего промежуточного слоя, и проверка надежности повторялась.
Как отмечает ученый, наиболее точные решения получаются для выходов последних слоев нейронной сети. Выходы ранних слоев сети классифицируются намного быстрее, но чаще всего неточно. Поэтому необходимо все классификаторы одновременно обучить так, чтобы ускорить распознавание, при этом контролировать потерю в точности. Например, чтобы ошибка за счет более раннего останова оказывалась не более одного процента.
«Высокая точность важна всегда при распознавании изображений. Например, если решение в системах распознавания лиц принято неверно, то либо кто-то посторонний может получить доступ к конфиденциальной информации, либо наоборот пользователю будет многократно отказано в доступе, потому что нейросеть не смогла его правильно идентифицировать.
Скоростью иногда можно пожертвовать, но она имеет значение, например, в системах видеонаблюдения, где крайне желательно принимать решения в реальном времени, то есть не более 20-30 миллисекунд на один кадр. Чтобы распознать объект на видеокадре здесь и сейчас, очень важно действовать быстро, не теряя при этом точности», — подчеркнул профессор Савченко.
Сегодня проблема рационального использования ресурсов в логистике становится ключевой, а значит, в транспортных системах приходится переосмысливать саму логику перевозок. Исследование белорусских инженеров из компании UST Inc. показывает, что недостаточно простого перехода на электротягу или возобновляемые источники энергии — важно уменьшить энергозатраты транспорта на единицу выполненной работы, то есть повысить удельную энергоэффективность. Подобный подход реализуется в транспортно-инфраструктурных комплексах uST.
В Передовой инженерной школе КНИТУ-КАИ (ПИШ КАИ) действуют временные научные коллективы (ВНК), работающие над реальными инженерными задачами. Одним из наиболее ярких результатов стала работа ВНК-4, созданного для развития технологий в области легких авиационных систем. Проект реализуется под руководством Никиты Сёмина, который также возглавляет специальное образовательное пространство (СОП) ПИШ КАИ «Авиамоделирование».
Ученые попытались обобщить все имеющиеся данные о возможном существовании жизни за пределами Земли, от предполагаемых древних окаменелостей в метеоритах до всевозможных сообщений об «инопланетянах». В итоге отсеивание всего слишком сомнительного позволило собрать небольшой список действительно интересных фактов. В этом рейтинге лидируют метеориты Мерчисон и Оргей.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Долгое время ученые полагали, что сотни гигантских статуй на острове Пасхи создали представители местной общины под руководством одного вождя. Однако авторы нового исследования поставили эту гипотезу под сомнение. Детальная трехмерная карта главного каменного карьера острова указала на более сложную картину. Вероятно, монументы были плодом творчества и соперничества небольших независимых групп.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
