Хотите получать важные новости науки?
Подписаться
  • Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
15.04.2021
Сколтех
1 312

Нейронные сети обучили оценке кредитоспособности банковских клиентов

4.2

Исследователи из Сколтеха совместно с одним из крупных европейских банков разработали нейронную сеть, которая превосходит самые современные решения в области использования данных о банковских транзакциях для оценки кредитоспособности клиентов.

Нейронные сети обучили оценке кредитоспособности банковских клиентов / ©Getty images / Автор: Михаил Григорьев

Результаты исследования опубликованы в трудах Международной конференции IEEE International Conference on Data Mining (ICDM) 2020 года. Алгоритмы машинного обучения уже широко используются в управлении рисками, помогая банкам в оценке клиентов и их финансового положения. «Современный человек и особенно клиент банка постоянно оставляет свои следы в цифровом мире. Например, информация о переводе денег другому лицу всегда остается в платежной системе.

Таким образом, у каждого человека образуется большое количество связей, которые можно представить в виде направленного графа, содержащего дополнительную полезную информацию для оценки клиента. Основная задача нашего исследования – обеспечить эффективную обработку и использование больших объемов разнообразной информации о связях между клиентами», − отмечается в опубликованной статье.

Исследователи Сколтеха Максим Панов, Кирилл Федянин и их коллеги из банковской сферы смогли показать, что использование данных о переводах между клиентами значительно улучшает качество кредитного скоринга по сравнению с алгоритмами, в которых используются только данные о заданном клиенте. Учет таких данных не только позволит банкам готовить более выгодные предложения для своих надежных клиентов, но и снизит негативные последствия мошеннических действий.

«Любой отдельно взятый клиент банка характеризуется в том числе совокупностью его социальных и финансовых связей с другими людьми, поэтому в нашем случае клиенты банка рассматривались как группа взаимосвязанных финансовых агентов. В этом исследовании мы поставили перед собой задачу выяснить, применима ли к финансовым агентам известная пословица «Скажи мне, кто твой друг, и я скажу, кто ты»», − говорит Максим Панов.

Исследователи использовали сверточную графовую нейронную сеть специальной архитектуры для обработки графов, в которых узлы графа соответствуют обезличенным идентификаторам клиентов банка, а ребра – связям между ними. Таким образом обеспечивается агрегирование данных связанных клиентов и прогнозирование кредитного рейтинга для заданного клиента.

Главная особенность предложенного подхода − возможность обработки крупномасштабных временны́х графов, присутствующих в банковских данных, в неизменном виде, то есть без какой-то предварительной обработки, которая зачастую очень трудоемка и приводит к частичным потерям содержащейся в этих данных информации.

Исследователи провели тщательное экспериментальное сравнение шести моделей, в котором победу одержала модель EWS-GCN. «Успех этой модели можно объяснить тремя факторами. Во-первых, модель напрямую обрабатывает полные данные о банковских транзакциях и тем самым сводит к минимуму потери содержащейся в них информации. Во-вторых, структура модели специально построена таким образом, чтобы она одновременно обладала высоким качеством предсказания и была вычислительно эффективной. Наконец, мы предложили специальную процедуру обучения для системы в целом», − отмечает Максим Панов.

Он также подчеркивает, что любая модель, предназначенная для использования в банковской сфере, должна быть очень надежной. «Сложные модели нейронных сетей пока остаются уязвимыми для адверсальных атак, поэтому прежде чем говорить о внедрении таких моделей в производственный процесс, необходимо до конца разобраться в таком феномене, как адверсальные атаки, в приложении к нашей модели и провести дополнительные исследования», − отмечает в заключение Панов.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 10:24
Любовь Соковикова

Изучив распределение древних и плотных звездных систем в скоплении Персея, ученые наткнулись на уникальную галактику, которая практически полностью состоит из темной материи.

Вчера, 10:57
Александр Березин

Выбросы углекислого газа, которые возникнут при сжигании доказанных запасов ископаемого топлива всего 200 компаний, будут настолько велики, что для их компенсации нужны новые леса в десятки миллионов квадратных километров. По крайней мере, так считают авторы новой научной работы. Однако исследование их предшественников ставит эти выводы под серьезное сомнение.

Вчера, 07:43
Андрей Папиш

Богомолы единственные среди насекомых обладают стереоскопическим зрением, как у человека. Британские биологи провели эксперимент над богомолами, надев на них 3D-очки и подвесив вниз головой. Специалисты проверяли, как охотники отреагируют на стимулы с разной и одинаковой контрастностью. В итоге опыт стал иллюстрацией парадокса буриданова осла.

17 июня
Адель Романенкова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

Позавчера, 13:42
ЮФУ

В ЮФУ придумали новый остроумный способ тестировать ИИ на способность работать в реальных ситуациях использования русского языка. Исследователи искусственного интеллекта из МИИ ИМ ЮФУ предлагают использовать интеллектуальные языковые игры, как пример — заставлять ИИ отвечать на вопросы из архива телевикторины «Что? Где? Когда?» и «Своей игры». Инициативу прокомментировал опытный игрок.

18 июня
Александр Березин

Ученые проанализировали сохранившиеся следы языка гуннов и пришли к неожиданному выводу: он принадлежал к енисейской семье языков. По их мнению, потомками гуннов были аринцы, до XVIII века проживавшие в районе Красноярска и совершавшие набеги на русские опорные пункты.

17 июня
Адель Романенкова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

5 июня
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

22 мая
ПНИПУ

Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно