Нейронные сети обучили оценке кредитоспособности банковских клиентов — Naked Science
8 минут
Сколтех

Нейронные сети обучили оценке кредитоспособности банковских клиентов

4.2

Исследователи из Сколтеха совместно с одним из крупных европейских банков разработали нейронную сеть, которая превосходит самые современные решения в области использования данных о банковских транзакциях для оценки кредитоспособности клиентов.

Нейронные сети обучили оценке кредитоспособности банковских клиентов / ©Getty images

Результаты исследования опубликованы в трудах Международной конференции IEEE International Conference on Data Mining (ICDM) 2020 года. Алгоритмы машинного обучения уже широко используются в управлении рисками, помогая банкам в оценке клиентов и их финансового положения. «Современный человек и особенно клиент банка постоянно оставляет свои следы в цифровом мире. Например, информация о переводе денег другому лицу всегда остается в платежной системе.

Таким образом, у каждого человека образуется большое количество связей, которые можно представить в виде направленного графа, содержащего дополнительную полезную информацию для оценки клиента. Основная задача нашего исследования – обеспечить эффективную обработку и использование больших объемов разнообразной информации о связях между клиентами», − отмечается в опубликованной статье.

Исследователи Сколтеха Максим Панов, Кирилл Федянин и их коллеги из банковской сферы смогли показать, что использование данных о переводах между клиентами значительно улучшает качество кредитного скоринга по сравнению с алгоритмами, в которых используются только данные о заданном клиенте. Учет таких данных не только позволит банкам готовить более выгодные предложения для своих надежных клиентов, но и снизит негативные последствия мошеннических действий.

«Любой отдельно взятый клиент банка характеризуется в том числе совокупностью его социальных и финансовых связей с другими людьми, поэтому в нашем случае клиенты банка рассматривались как группа взаимосвязанных финансовых агентов. В этом исследовании мы поставили перед собой задачу выяснить, применима ли к финансовым агентам известная пословица «Скажи мне, кто твой друг, и я скажу, кто ты»», − говорит Максим Панов.

Исследователи использовали сверточную графовую нейронную сеть специальной архитектуры для обработки графов, в которых узлы графа соответствуют обезличенным идентификаторам клиентов банка, а ребра – связям между ними. Таким образом обеспечивается агрегирование данных связанных клиентов и прогнозирование кредитного рейтинга для заданного клиента.

Главная особенность предложенного подхода − возможность обработки крупномасштабных временны́х графов, присутствующих в банковских данных, в неизменном виде, то есть без какой-то предварительной обработки, которая зачастую очень трудоемка и приводит к частичным потерям содержащейся в этих данных информации.

Исследователи провели тщательное экспериментальное сравнение шести моделей, в котором победу одержала модель EWS-GCN. «Успех этой модели можно объяснить тремя факторами. Во-первых, модель напрямую обрабатывает полные данные о банковских транзакциях и тем самым сводит к минимуму потери содержащейся в них информации. Во-вторых, структура модели специально построена таким образом, чтобы она одновременно обладала высоким качеством предсказания и была вычислительно эффективной. Наконец, мы предложили специальную процедуру обучения для системы в целом», − отмечает Максим Панов.

Он также подчеркивает, что любая модель, предназначенная для использования в банковской сфере, должна быть очень надежной. «Сложные модели нейронных сетей пока остаются уязвимыми для адверсальных атак, поэтому прежде чем говорить о внедрении таких моделей в производственный процесс, необходимо до конца разобраться в таком феномене, как адверсальные атаки, в приложении к нашей модели и провести дополнительные исследования», − отмечает в заключение Панов.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Вчера, 17:41
37 минут
Александр Березин

Филипп Мандей основал целое направление исследований: он первым установил, что закисление океанов — последствие глобального потепления — угрожает обонянию и умению ориентироваться у морских рыб. Само собой, это создает угрозу их вымирания. Долго оставалось загадкой только одно: как существующие виды рыб перенесли серьезное закисление океана при прошлых изменениях климата. Теперь все проясняется: похоже, Мандей обнаружил эффект, которого никогда не было. Интересно, что вместе с ним его наблюдали еще 179 ученых — и теперь все они оказались в центре чудовищного скандала. Попробуем разобраться в деталях.

Вчера, 15:59
13 минут
Александр Речкин

В учебниках истории XX века, на сотнях плакатах и в десятках кинофильмах о Второй мировой войне мы видели знаменитые танки, «катюши» и бороздящие небеса Ил-2. Давайте проверим, сможете ли вы отличить советскую военную технику от машин союзников и стран «оси».

Позавчера, 15:24
5 минут
Илья Ведмеденко

Военно-морской флот получил многоцелевую атомную подводную лодку К-561 «Казань». Это один из самых совершенных кораблей такого типа в мире.

Вчера, 17:41
37 минут
Александр Березин

Филипп Мандей основал целое направление исследований: он первым установил, что закисление океанов — последствие глобального потепления — угрожает обонянию и умению ориентироваться у морских рыб. Само собой, это создает угрозу их вымирания. Долго оставалось загадкой только одно: как существующие виды рыб перенесли серьезное закисление океана при прошлых изменениях климата. Теперь все проясняется: похоже, Мандей обнаружил эффект, которого никогда не было. Интересно, что вместе с ним его наблюдали еще 179 ученых — и теперь все они оказались в центре чудовищного скандала. Попробуем разобраться в деталях.

Вчера, 15:59
13 минут
Александр Речкин

В учебниках истории XX века, на сотнях плакатах и в десятках кинофильмах о Второй мировой войне мы видели знаменитые танки, «катюши» и бороздящие небеса Ил-2. Давайте проверим, сможете ли вы отличить советскую военную технику от машин союзников и стран «оси».

5 мая
6 минут
Сколтех

В России таких результатов не было уже около десяти лет. Его получение потребовало настоящей кооперации между исследователями ИВМ РАН, Сколтеха и МГУ.

23 апреля
11 минут
Василий Парфенов

Действующий глава NASA в рамках общения с прессой ответил на ряд вопросов, касающихся недавних заявлений российских политиков и главы «Роскосмоса» о скором отказе от собственного сегмента МКС. Администратор заверил всех, что агентство находится в хороших отношениях с Россией, а также поделился информацией о согласовании обмена местами для астронавтов и космонавтов в пилотируемых миссиях двух стран.

16 апреля
4 минуты
Илья Ведмеденко

Исследователи установили, что обнаруженный в Баренцевом море объект — погибшая советская субмарина типа «Крейсерская». Это одна из самых больших подлодок СССР периода Второй мировой.

25 апреля
17 минут
Александр Березин

На этой неделе СМИ выдали новость, от которой можно впасть в шок: «Ранее из России уезжало около 14 тысяч исследователей [в год], теперь — 70 тысяч». Мы внимательно разобрались в ситуации и вынуждены отметить, что ничего подобного не было и нет. В реальности речь вовсе не об ученых и даже не о высококвалифицированных специалистах. Проблемы с учеными в России есть. Но в этом случае речь идет не о них, а о том, что отдельные бывшие комсомольские вожаки, удачно устроившиеся в РАН, перепутали утечку мозгов из России с отъездом из нее гастарбайтеров. Разбираемся, как это у них получилось.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: