Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИУ ВШЭ разработали метод высококачественного редактирования изображений
Исследователи Центра ИИ НИУ ВШЭ, AIRI и Бременского университета разработали новый метод редактирования изображений на основе глубинного обучения — StyleFeatureEditor. Он позволяет точно воссоздавать мельчайшие детали изображения и сохранять их при редактировании. С его помощью пользователи смогут изменять цвет волос или выражение лица без потери качества изображения.
Результаты работы опубликованы на самой цитируемой конференции по компьютерному зрению CVPR 2024. Искусственный интеллект уже научился генерировать изображения и редактировать их. Это стало возможным благодаря генеративно-состязательным нейросетям (GANs — generative adversarial networks). Архитектура предполагает две независимые сети: генератор производит изображения, дискриминатор различает реальные и сгенерированные образцы, и они соревнуются друг с другом. Новым этапом в развитии генеративно-состязательных сетей стала модель StyleGAN. Она может генерировать изображения и изменять их отдельные части по запросу пользователя, но не умеет работать с реальными фото или картинками.
Исследователи Центра ИИ НИУ ВШЭ, AIRI и Бременского университета предложили способ быстро и качественно редактировать реальные изображения. Ученые создали метод (StyleFeatureEditor) с двумя модулями: первый воссоздает (реконструирует) исходное изображение, а второй редактирует эту реконструкцию. Результат работы модулей передается в StyleGAN в понятном для нейросети наборе внутренних представлений, из которых и создается редактированное изображение. При этом разработчикам удалось решить проблемы, которые возникали в предыдущих исследованиях: при небольшом наборе представлений нейросеть хорошо редактировала изображение, но теряла детали исходного изображения, а при большом наборе все детали сохранялись, но нейросеть не понимала, как их правильно преобразовать с учетом поставленной задачи.
Для решения этой проблемы исследователи предложили следующее: первый модуль ищет и большие, и маленькие представления, а второй учится редактировать большие на примере редактуры маленьких представлений. Однако, чтобы обучить эти модули правильно редактировать представления, нейросети нужны настоящие изображения и их отредактированные версии.
«Нам нужны были образцы, например одно и то же лицо с разной мимикой, прической, деталями. К сожалению, таких пар изображений не существует на данный момент. И мы придумали хитрость: с помощью метода, работающего с малыми представлениями, мы создали реконструкцию настоящего изображения и пример редактирования этой реконструкции. Несмотря на то что получились довольно простые примеры без деталей, модель четко поняла, как правильно совершать редактирования», — рассказывает один из авторов статьи, стажер-исследователь Центра глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук ФКН ВШЭ, младший научный сотрудник лаборатории Fusion Brain AIRI Денис Бобков.
Однако обучение только на сгенерированных (простых) примерах ведет к потере деталей при работе с реальными (сложными) изображениями. Чтобы этого не происходило, ученые добавили реальные изображения в обучающую выборку. И нейросеть училась воссоздавать их в деталях.
Таким образом, показав модели и как редактировать простые, и как воссоздавать сложные изображения, ученым удалось создать условия, при которых нейросеть научилась редактировать сложные изображения. В частности, разработанный подход справляется с добавлением новых элементов стиля, а также лучше сохраняет детали исходных изображений по сравнению с другими существующими методами.
В случае простой реконструкции (первый ряд) StyleFeatureEditor аккуратно воспроизвел шляпку, в то время как большинство других методов ее практически потеряло. Лучшее качество разработанный метод показал в случае добавления аксессуаров (третий ряд): большинство методов справились с добавлением очков, но только StyleFeatureEditor сохранил исходный цвет глаз.
«Благодаря технике обучения на сгенерированных данных, мы получили модель с хорошим качеством редактирования, а также быструю скорость работы за счет использования подхода с достаточно легковесными нейросетями. Фреймворку StyleFeatureEditor требуется всего 0,07 секунды на редактирование одного изображения», — говорит Айбек Аланов, заведующий Центром глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук ФКН ВШЭ, руководитель научной группы «Контролируемый генеративный ИИ» лаборатории Fusion Brain AIRI.
Исследование поддержано грантом для исследовательских центров в области искусственного интеллекта, предоставленным Аналитическим центром при Правительстве России. Результаты исследования будут представлены в докладе на ежегодной конференция по искусственному интеллекту и машинному обучению Fall into ML 2024, которая пройдет в НИУ ВШЭ 25-26 октября. На площадке Высшей школы экономики ведущие ученые в области искусственного интеллекта обсудят лучшие работы, опубликованные на конференциях А* в 2024 году — флагманских событиях этой области. Демо разработанного метода можно опробовать на HuggingFace, код — в Github репозитории.
К любопытным выводам привели наблюдения японских ученых за пестролицыми буревестниками. Оказалось, эти птицы испражняются в основном на лету, намеренно избегая такой возможности на поверхности воды. Очевидно, предположили исследователи, это облегчает движения в воздухе взрослым особям с добычей во рту.
Биотехнологи из Ноттингемского университета (Великобритания) воспроизвели процесс естественной ферментации какао-бобов в лаборатории, чтобы проверить, можно ли улучшить вкус готового продукта «вручную». Оказалось, что правильно подобранная колония микроорганизмов может внести свои нотки и определить качество будущего шоколада.
Исследователям квантовых компьютеров обычно приходится выбирать: сделать стабильный кубит или быстрый. Международная группа ученых нашла способ создать кубиты, избавленные от этой необходимости.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».
Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии