• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
05.09.2024, 11:00
НИУ ВШЭ
245

В НИУ ВШЭ разработали метод высококачественного редактирования изображений

❋ 4.4

Исследователи Центра ИИ НИУ ВШЭ, AIRI и Бременского университета разработали новый метод редактирования изображений на основе глубинного обучения — StyleFeatureEditor. Он позволяет точно воссоздавать мельчайшие детали изображения и сохранять их при редактировании. С его помощью пользователи смогут изменять цвет волос или выражение лица без потери качества изображения.

Сравнение работы StyleFeatureEditor (SFE) с другими методами на наборе лиц с большим числом деталей / © Denis Bobkov, Vadim Titov, Aibek Alanov, Dmitry Vetrov; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 9337-9346

Результаты работы опубликованы на самой цитируемой конференции по компьютерному зрению CVPR 2024. Искусственный интеллект уже научился генерировать изображения и редактировать их. Это стало возможным благодаря генеративно-состязательным нейросетям (GANs — generative adversarial networks). Архитектура предполагает две независимые сети: генератор производит изображения, дискриминатор различает реальные и сгенерированные образцы, и они соревнуются друг с другом. Новым этапом в развитии генеративно-состязательных сетей стала модель StyleGAN. Она может генерировать изображения и изменять их отдельные части по запросу пользователя, но не умеет работать с реальными фото или картинками.

Исследователи Центра ИИ НИУ ВШЭ, AIRI и Бременского университета предложили способ быстро и качественно редактировать реальные изображения. Ученые создали метод (StyleFeatureEditor) с двумя модулями: первый воссоздает (реконструирует) исходное изображение, а второй редактирует эту реконструкцию. Результат работы модулей передается в StyleGAN в понятном для нейросети наборе внутренних представлений, из которых и создается редактированное изображение. При этом разработчикам удалось решить проблемы, которые возникали в предыдущих исследованиях: при небольшом наборе представлений нейросеть хорошо редактировала изображение, но теряла детали исходного изображения, а при большом наборе все детали сохранялись, но нейросеть не понимала, как их правильно преобразовать с учетом поставленной задачи.

Для решения этой проблемы исследователи предложили следующее: первый модуль ищет и большие, и маленькие представления, а второй учится редактировать большие на примере редактуры маленьких представлений. Однако, чтобы обучить эти модули правильно редактировать представления, нейросети нужны настоящие изображения и их отредактированные версии.

«Нам нужны были образцы, например одно и то же лицо с разной мимикой, прической, деталями. К сожалению, таких пар изображений не существует на данный момент. И мы придумали хитрость: с помощью метода, работающего с малыми представлениями, мы создали реконструкцию настоящего изображения и пример редактирования этой реконструкции. Несмотря на то что получились довольно простые примеры без деталей, модель четко поняла, как правильно совершать редактирования», — рассказывает один из авторов статьи, стажер-исследователь Центра глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук ФКН ВШЭ, младший научный сотрудник лаборатории Fusion Brain AIRI Денис Бобков.

Однако обучение только на сгенерированных (простых) примерах ведет к потере деталей при работе с реальными (сложными) изображениями. Чтобы этого не происходило, ученые добавили реальные изображения в обучающую выборку. И нейросеть училась воссоздавать их в деталях.

Таким образом, показав модели и как редактировать простые, и как воссоздавать сложные изображения, ученым удалось создать условия, при которых нейросеть научилась редактировать сложные изображения. В частности, разработанный подход справляется с добавлением новых элементов стиля, а также лучше сохраняет детали исходных изображений по сравнению с другими существующими методами.

В случае простой реконструкции (первый ряд) StyleFeatureEditor аккуратно воспроизвел шляпку, в то время как большинство других методов ее практически потеряло. Лучшее качество разработанный метод показал в случае добавления аксессуаров (третий ряд): большинство методов справились с добавлением очков, но только StyleFeatureEditor сохранил исходный цвет глаз.

«Благодаря технике обучения на сгенерированных данных, мы получили модель с хорошим качеством редактирования, а также быструю скорость работы за счет использования подхода с достаточно легковесными нейросетями. Фреймворку StyleFeatureEditor требуется всего 0,07 секунды на редактирование одного изображения», — говорит Айбек Аланов, заведующий Центром глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук ФКН ВШЭ, руководитель научной группы «Контролируемый генеративный ИИ» лаборатории Fusion Brain AIRI.

Исследование поддержано грантом для исследовательских центров в области искусственного интеллекта, предоставленным Аналитическим центром при Правительстве России. Результаты исследования будут представлены в докладе на ежегодной конференция по искусственному интеллекту и машинному обучению Fall into ML 2024, которая пройдет в НИУ ВШЭ 25-26 октября. На площадке Высшей школы экономики ведущие ученые в области искусственного интеллекта обсудят лучшие работы, опубликованные на конференциях А* в 2024 году — флагманских событиях этой области. Демо разработанного метода можно опробовать на HuggingFace, код — в Github репозитории.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

11 сентября, 12:04
ПНИПУ

Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно