Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИУ ВШЭ разработали метод высококачественного редактирования изображений
Исследователи Центра ИИ НИУ ВШЭ, AIRI и Бременского университета разработали новый метод редактирования изображений на основе глубинного обучения — StyleFeatureEditor. Он позволяет точно воссоздавать мельчайшие детали изображения и сохранять их при редактировании. С его помощью пользователи смогут изменять цвет волос или выражение лица без потери качества изображения.
Результаты работы опубликованы на самой цитируемой конференции по компьютерному зрению CVPR 2024. Искусственный интеллект уже научился генерировать изображения и редактировать их. Это стало возможным благодаря генеративно-состязательным нейросетям (GANs — generative adversarial networks). Архитектура предполагает две независимые сети: генератор производит изображения, дискриминатор различает реальные и сгенерированные образцы, и они соревнуются друг с другом. Новым этапом в развитии генеративно-состязательных сетей стала модель StyleGAN. Она может генерировать изображения и изменять их отдельные части по запросу пользователя, но не умеет работать с реальными фото или картинками.
Исследователи Центра ИИ НИУ ВШЭ, AIRI и Бременского университета предложили способ быстро и качественно редактировать реальные изображения. Ученые создали метод (StyleFeatureEditor) с двумя модулями: первый воссоздает (реконструирует) исходное изображение, а второй редактирует эту реконструкцию. Результат работы модулей передается в StyleGAN в понятном для нейросети наборе внутренних представлений, из которых и создается редактированное изображение. При этом разработчикам удалось решить проблемы, которые возникали в предыдущих исследованиях: при небольшом наборе представлений нейросеть хорошо редактировала изображение, но теряла детали исходного изображения, а при большом наборе все детали сохранялись, но нейросеть не понимала, как их правильно преобразовать с учетом поставленной задачи.
Для решения этой проблемы исследователи предложили следующее: первый модуль ищет и большие, и маленькие представления, а второй учится редактировать большие на примере редактуры маленьких представлений. Однако, чтобы обучить эти модули правильно редактировать представления, нейросети нужны настоящие изображения и их отредактированные версии.
«Нам нужны были образцы, например одно и то же лицо с разной мимикой, прической, деталями. К сожалению, таких пар изображений не существует на данный момент. И мы придумали хитрость: с помощью метода, работающего с малыми представлениями, мы создали реконструкцию настоящего изображения и пример редактирования этой реконструкции. Несмотря на то что получились довольно простые примеры без деталей, модель четко поняла, как правильно совершать редактирования», — рассказывает один из авторов статьи, стажер-исследователь Центра глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук ФКН ВШЭ, младший научный сотрудник лаборатории Fusion Brain AIRI Денис Бобков.
Однако обучение только на сгенерированных (простых) примерах ведет к потере деталей при работе с реальными (сложными) изображениями. Чтобы этого не происходило, ученые добавили реальные изображения в обучающую выборку. И нейросеть училась воссоздавать их в деталях.
Таким образом, показав модели и как редактировать простые, и как воссоздавать сложные изображения, ученым удалось создать условия, при которых нейросеть научилась редактировать сложные изображения. В частности, разработанный подход справляется с добавлением новых элементов стиля, а также лучше сохраняет детали исходных изображений по сравнению с другими существующими методами.
В случае простой реконструкции (первый ряд) StyleFeatureEditor аккуратно воспроизвел шляпку, в то время как большинство других методов ее практически потеряло. Лучшее качество разработанный метод показал в случае добавления аксессуаров (третий ряд): большинство методов справились с добавлением очков, но только StyleFeatureEditor сохранил исходный цвет глаз.
«Благодаря технике обучения на сгенерированных данных, мы получили модель с хорошим качеством редактирования, а также быструю скорость работы за счет использования подхода с достаточно легковесными нейросетями. Фреймворку StyleFeatureEditor требуется всего 0,07 секунды на редактирование одного изображения», — говорит Айбек Аланов, заведующий Центром глубинного обучения и байесовских методов Института искусственного интеллекта и цифровых наук ФКН ВШЭ, руководитель научной группы «Контролируемый генеративный ИИ» лаборатории Fusion Brain AIRI.
Исследование поддержано грантом для исследовательских центров в области искусственного интеллекта, предоставленным Аналитическим центром при Правительстве России. Результаты исследования будут представлены в докладе на ежегодной конференция по искусственному интеллекту и машинному обучению Fall into ML 2024, которая пройдет в НИУ ВШЭ 25-26 октября. На площадке Высшей школы экономики ведущие ученые в области искусственного интеллекта обсудят лучшие работы, опубликованные на конференциях А* в 2024 году — флагманских событиях этой области. Демо разработанного метода можно опробовать на HuggingFace, код — в Github репозитории.
На Большом адронном коллайдере ученые почти сталкивали на высоких скоростях ядра свинца и получили при этом следовые количества золота. Исследователи собрали данные об этом процессе на детекторе ALICE.
Давно известно, что переработки негативно сказываются на физическом и психическом здоровье человека. Однако неврологические механизмы этого влияния и связанные с ним анатомические изменения ясны не были. Южнокорейские исследователи изучили структуру мозга у людей с разным графиком работы и обнаружили новую закономерность.
Обитающие в лесах Уганды шимпанзе используют лекарственные растения для обработки ран не только у себя, но и у своих сородичей. По мнению авторов новой работы, в которой задокументированы такие случаи, эти открытия проливают свет на эволюционные корни человеческой медицины.
Мохаммад Х. Аттаран (Mohammad H. Attaran) — концепт-дизайнер и цифровой художник, работающий в Великобритании. В своих проектах он сочетает эстетику научной фантастики с элементами, вдохновлёнными природой, особенно анатомией насекомых. Его машины, мехи и транспортные средства выглядят одновременно инопланетно и инженерно достоверно. Ну или почти.
Исследуя генетическое происхождение мужского населения Нидерландов, ученые заметили географические особенности распределения гаплогрупп. Теперь, чтобы их объяснить, проанализировали Y-хромосомы сотен человек, начиная с раннего Средневековья, в сравнении с геномами современного населения страны. Авторы рассчитывали обнаружить непрерывность популяций, однако столкнулись с неожиданными сложностями.
Когда пальцы долго находятся в воде, кожа на них начинает морщиться. Из-за чего и по какому принципу это происходит, долгое время известно не было. Однако специалисты по биомедицине из США нашли ответы на оба вопроса.
Да, с волосами и люком все так. У космонавта Суниты Уильямс волосы на МКС плавали свободно, а у Кэти Пэрри и прочих в полете 14 апреля 2025 года — нет. Но это не значит, что суборбитального космического полета первого чисто женского экипажа не было или что он был инсценировкой. Причем, в общем-то, чтобы понять это, даже не нужно обладать специальными знаниями.
Многие знают, как популярны сувениры из окаменелостей — зубы древних акул или полированные панцири аммонитов. Но чем реже встречаются такие артефакты, тем они ценнее, то есть на них можно много заработать. И это проблема для палеонтологов. Американский специалист по тираннозаврам оценил ущерб, который нанесла коммерческая добыча костей T. rex и подсчитал среднюю цену таких образцов. Оказалось, больше половины найденных тирексов находится в частных руках, а значит, для науки они недоступны или ненадежны.
Мощнейшее отключение электроэнергии за последние 20 лет истории Европы случилось уже неделю назад, а испанские власти пока так и не объявили о его причинах. Это логично: как мы покажем ниже, ответ на вопрос, кто виноват, получится очень неполиткорректным. И, более того, противоречащим линии правящей в Испании партии. Но мы живем за тысячи километров от нее, поэтому можем себе позволить аполитичный анализ случившегося. Так что же произошло на самом деле и каковы наши шансы увидеть подобное у себя дома?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии