Эксперты о квантовых компьютерах
Подробнее
29.10.2020
Сколтех

Машинное обучение поможет локализовать источники мерцательной аритмии

4.5

Исследователи из Сколтеха и их американские коллеги создали новый подход на основе машинного обучения для локализации драйверов мерцательной аритмии. Так называются небольшие участки сердечной мышцы, которые могут вызвать этот самый распространенный в мире вид аритмии. Предложенный подход может повысить эффективность точного медицинского вмешательства при лечении заболевания, от которого, по оценкам Американской кардиологической ассоциации, страдает 33 миллиона человек по всему миру.

Исследователи из Сколтеха и их американские коллеги создали новый подход на основе машинного обучения для локализации драйверов мерцательной аритмии / ©Pavel Odinev / Skoltech

Исследование опубликовано в недавнем выпуске журнала Circulation: Arrhythmia and Electrophysiology. На сегодня неясен механизм, вызывающий фибрилляцию предсердий (ФП), также известную как мерцательная аритмия. Эту болезнь связывают с повышенным риском сердечной недостаточности и инсульта. Источником ФП могут быть так называемые драйверы — локализованные источники повторяющейся вращательной активности, вызывающие нарушение сердечного ритма. Хирургическое удаление драйверов позволяет смягчить течение болезни или даже восстановить нормальный сердечный ритм.

Чтобы локализовать драйверы ФП, врачи используют мультиэлектродное картирование. Этот метод позволяет при помощи катетеров подвести электроды к поверхности сердца, получить электрограммы (ЭГ) с его внутренней части и построить таким образом «карту» предсердий. Однако из-за сложности и субъективности метода интерпретация полученных ЭГ в клинической практике зачастую дает ложные результаты, не обнаруживая реально существующий драйвер либо указывая на присутствие драйвера там, где его нет.

С недавних пор ученые стали применять для анализа карт предсердий алгоритмы машинного обучения, пытаясь обнаружить с их помощью признаки ФП. Такие алгоритмы требуют размеченных данных с истинным положением драйвера, и точности мультиэлектродного картирования оказывается недостаточно. Поэтому для нового алгоритма, разработанного в недавнем исследовании под руководством профессоров Дмитрия Дылова из Сколтеха и Вадима Федорова из Университета штата Огайо, использовались данные более надежного метода обнаружения драйверов, оптического картирования, как эталона для обучения.

Как поясняет профессор Сколтеха Дмитрий Дылов, метод оптического картирования высокого разрешения в ближнем инфракрасном диапазоне (NIOM) «использует инфракрасные сигналы для регистрации электрической активности внутри сердечной мышцы, тогда как электроды измеряют сигналы лишь на поверхности органа. Если учесть вдобавок высочайшее разрешение оптического картирования, то этот метод становится очевидным решением для визуализации и разметки карт электрической активности в сердечной ткани».

Так как оптическое картирование пока нельзя применять в клинике, исследователи испытали предложенный подход в лаборатории на 11 эксплантированных человеческих сердцах, в которых была индуцирована ФП. При анализе полученных мультиэлектродным картированием ЭГ алгоритм показал точность 81 процентов для локализации драйверов ФП. По мнению коллектива, использование большей обучающей выборки с валидацией на данных оптического картирования позволит усовершенствовать алгоритмы на базе машинного обучения настолько, что они станут ценным вспомогательным инструментом в клинической практике.

«Набор данных по 11 эксплантированным сердцам одновременно и бесценен, и чересчур мал. Мы поняли, что перенос результатов в клиническую практику потребует намного большей выборки для репрезентативного клинического исследования, однако мы были обязаны извлечь решительно всю информацию из все еще бьющихся человеческих сердец, пожертвованных для исследования, — рассказывает Дмитрий Дылов.

— Следует отметить приверженность делу и кропотливость двух наших аспирантов: Саша Золотарев совершил на несколько месяцев поездку по программе академической мобильности в лабораторию Федорова, чтобы разобраться в особенностях процесса визуализации и доложить результаты пилотного исследования на крупнейшей аритмологической конференции в Сан-Франциско, а Катя Иванова участвовала в частотном и визуализационном анализе в стенах Сколтеха. Эти два молодых исследователя действительно взяли от выборки все, что можно, чтобы обучить модель машинного обучения с помощью оптических данных».

В исследовании также принимали участие Медицинский центр Векснера при Университете штата Огайо, а также Институт исследований сердца и легких имени Дороти Дэвис. Работа профинансирована грантами Национальных институтов здравоохранения США, Российского фонда фундаментальных исследований и Центра исследований сердечной недостаточности и аритмии имени Боба и Коррин Фрик. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Позавчера, 14:06
Мария Азарова

Американские исследователи оценили вероятность повторного заражения коронавирусами SARS-CoV, HCoV-229E, HCoV-OC43, HCoV-NL63 и особенно SARS-CoV- 2.

7 часов назад
Мария Роговая

От вирусов нет лекарств — помогают только антитела. Они есть не у всех. Можно научить организм человека производить их самостоятельно, с помощью вакцины. А можно их просто изготовить и ввести больному. Первые российские антитела к SARS-CoV-2 уже созданы и проходят доклинические испытания.

Сегодня, 06:00
Мария Азарова

По мнению японских ученых, гиперинсулинемию и связанную с ней сверхэкспрессию белка GRP78 следует рассматривать как терапевтическую или профилактическую цели в свете пандемии коронавируса.

Позавчера, 14:06
Мария Азарова

Американские исследователи оценили вероятность повторного заражения коронавирусами SARS-CoV, HCoV-229E, HCoV-OC43, HCoV-NL63 и особенно SARS-CoV- 2.

22 октября
Александр Березин

Повелители тундростепей Евразийского континента, оказывается, вовсе не вымерли с концом ледникового периода. Вопреки тому, что считалось ранее, они выжили — как минимум на Таймыре и как минимум до 1900 года до нашей эры. А это на много веков позже постройки пирамиды Хеопса. Получается, человек не привел мамонта к вымиранию? Или, напротив, нашел затерянные на Таймыре остатки вида и уничтожил их совсем недавно? Это сложный вопрос, от которого зависит ответ на другой: могут ли слоны заселить Север России и в наши дни?

22 октября
Ольга Иванова

Американские исследователи пришли к выводу, что человеческий мозг уменьшился из-за процессов глобализации, кооперации и разделения труда.

13 октября
Мария Азарова

Анализ образцов крови, взятых у российских космонавтов до и после их полета на МКС, показал, что длительное пребывание в космосе может провоцировать повреждение мозга.

12 октября
Алиса Гаджиева

Две тысячи лет назад многие сооружения строили лучше, чем сегодня.

27 сентября
Мария Азарова

Новое исследование генетиков из Германии и Италии, похоже, помогло найти ответ на вопрос, который занимал ученых свыше двух тысяч лет: откуда взялись этруски?

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: