• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
11 ноября, 09:31
ПНИПУ
1
134

Искусственный интеллект обучили проектировать материалы с противоречивыми свойствами

❋ 4.7

Современные вызовы в области высоких технологий — будь то создание костных имплантатов нового поколения, эффективных систем охлаждения двигателей или легких авиационных конструкций — сталкиваются с общей фундаментальной проблемой. Речь идет о необходимости одновременно совместить в одном материале несколько противоречащих друг другу свойств. Например, как создать структуру, которая будет одновременно максимально пористой для прорастания живой ткани, но при этом достаточно прочной, чтобы выдерживать механические нагрузки? Или как создать лопатку турбины, сочетающую максимальную жаропрочность с минимальным весом — ключевое требование для подъемной силы и грузоподъемности самолетов. Ученые Пермского Политеха создали уникальную программу, которая умеет проектировать материалы будущего. В отличие от обычных компьютерных программ, она не просто копирует известные решения, а действительно создает новые структуры. Результаты исследования показали высокую эффективность метода.

Структура пористого материала в разрезе / © Mateus Andre, Freepick

Как разработать материал с противоречащими свойствами? Ключ к решению таких сложных задач кроется во внутренней архитектуре материала — его микроструктуре. Однако проектирование оптимальной трехмерной структуры вручную сталкивается с фундаментальной сложностью: количество возможных комбинаций и взаимосвязей между элементами настолько велико, что их анализ традиционными методами становится крайне трудоемким и длительным процессом.

Современные подходы к решению этой проблемы основаны на компьютерном моделировании, но и они имеют существенные ограничения. Наиболее распространенный метод — топологическая оптимизация — работает по принципу «разумного упрощения». Компьютер анализирует виртуальную модель детали, которая изначально представляет собой сплошной массив материала, и вычисляет, в каких областях напряжение минимально. Эти «спокойные» зоны считаются избыточными — подобно тому, как архитектор может убрать лишние перегородки в здании, не снижая его прочности. Система постепенно удаляет такой материал, оставляя только те элементы, которые действительно необходимы для сопротивления нагрузкам.

Такой подход позволяет получить надежную конструкцию, но требует огромных вычислительных мощностей и времени для каждого нового случая. Более современные методы используют базы данных известных материалов и алгоритмы машинного обучения, которые ищут закономерности в уже существующих структурах. Однако такие системы могут предлагать лишь вариации известных решений, не создавая принципиально новых материалов с уникальными свойствами.

Большинство методов работают с двумерными моделями или требуют огромных вычислительных мощностей. Кроме того, они часто генерируют структуры с нарушенной целостностью — например, с «висящими» элементами, которые невозможно воспроизвести в реальности.

Перспективное направление в решении этих проблем — генеративно-состязательные сети (GAN) — это особая архитектура искусственного интеллекта, где две нейросети работают вместе, словно дизайнер и критик. Одна нейросеть (генератор) предлагает новые варианты структур, а вторая (дискриминатор) оценивает, насколько они реалистичны. В результате такой совместной работы система учится создавать все более совершенные структуры.

Ученые Пермского Политеха усовершенствовали метод, создав первую в мире трехмерную версию известной архитектуры StyleGAN2. Если раньше подобные системы работали в основном с плоскими изображениями, то теперь алгоритм научился генерировать сложные объемные структуры. Их ключевое достижение — создание не просто случайных вариаций, а целого «пространства дизайна», где можно плавно менять параметры и получать работоспособные структуры. Статья опубликована в журнале StructuralandMultidisciplinaryOptimization.

Ученые провели первичное обучение нейросети на обширной библиотеке из пяти тысяч моделей пористых материалов — одних из самых сложных в проектировании. В процессе система проанализировала и усвоила фундаментальные принципы их построения — распределение твердых и пустотных областей, варианты соединения внутренних элементов и типичные особенности. Этот этап позволил искусственному интеллекту сформировать базовое понимание внутренней архитектуры образцов.

Для нахождения наилучших решений применяется генетический алгоритм, работающий по принципу естественного отбора. Он последовательно анализирует варианты строений материалов, оценивая их по целевым параметрам — прочности и плотности.

— На этом этапе формируется набор структур, в которых невозможно одновременно улучшить оба показателя: если мы пытаемся увеличить прочность, неизбежно возрастает плотность, и наоборот. Такие результаты считаются предпочтительными, поскольку они предлагают наилучшие возможные компромиссы между противоречивыми требованиями, — рассказывает Михаил Ташкинов, кандидат физико-математических наук, заведующий научно-исследовательской лабораторией «Механика биосовместимых материалов и устройств» ПНИПУ.

— Наша нейросеть не просто копирует или смешивает известные образцы, а действительно изобретает. Но главное — она делает это не хаотично. Все созданные варианты система автоматически раскладывает как бы «по полочкам» — в упорядоченное цифровое пространство, где похожие структуры находятся рядом. Это позволяет легко находить и сравнивать разные решения, что раньше было практически невозможным, — рассказывает Евгений Кононов, инженер-исследователь.

Представьте, что вы покупаете машину: нельзя одновременно получить максимальную скорость и минимальный расход топлива. Алгоритм ученых ПНИПУ находит все такие «предельные» варианты. Например, он показывает: «вот самая прочная структура для заданной легкости, а вот самая легкая для заданной прочности». Дальше этого предела улучшить уже ничего нельзя.

Результаты исследования показали высокую эффективность метода. Разработанная система смогла создать трехмерные микроструктуры, которые превзошли по характеристикам материалы из обучающей базы данных. При одинаковой плотности новые конструкции демонстрируют увеличение жесткости на 15-20% по сравнению с существующими аналогами.

Полученные результаты открывают новые возможности для создания современных пористых структур, которые могут применять в высокотехнологичных отраслях промышленности.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Пермский национальный исследовательский политехнический университет (национальный исследовательский, прошлые названия: Пермский политехнический институт, Пермский государственный технический университет) — технический ВУЗ Российской Федерации. Основан в 1960 году как Пермский политехнический институт (ППИ), в результате объединения Пермского горного института (организованного в 1953 году) с Вечерним машиностроительным институтом. В 1992 году ППИ в числе первых политехнических вузов России получил статус технического университета.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
24 декабря, 11:36
ПНИПУ

В России существуют тысячи рабочих мест с вредными и опасными условиями труда. На шахтах, металлургических заводах, в авиастроении люди годами находятся в условиях сильного шума, вибрации, запыленности и контакта с химикатами, что наносит серьезный ущерб здоровью. Однако существующие методы оценки рисков оказываются неэффективными для прогнозирования заболеваний, поскольку работают с усредненными показателями группы, а обязательные медосмотры определяют уже наступившую болезнь. Такая система лечит последствия, но не предотвращает причину. Ученые Пермского Политеха, управления Роспотребнадзора и ФНЦ медико-профилактических технологий управления рисками здоровью населения разработали программу, которая прогнозирует индивидуальные профессиональные риски здоровью для каждого конкретного работника с точностью 89%.

25 декабря, 09:49
Максим Абдулаев

Ученые выяснили, что специфический вариант гена fruitless (fru) управляет социальным поведением самцов медоносной пчелы, заставляя их активно участвовать в коллективном обмене пищей и правильно выбирать место в колонии.

26 декабря, 12:32
КНЦ РАН

Обычно, увидев черную плесень в помещении, мы стремимся избавиться от нее как можно скорее. Микроскопический гриб Aspergillus niger обладает уникальной живучестью и умением приспосабливаться к любым неблагоприятным условиям среды, но для человека воспринимается как признак бытовой неприятности. Он портит еду, размножается в сырых углах, вызывает аллергию и ассоциируется с антисанитарией. Однако именно эти качества — устойчивость к токсичным веществам и способность расти в экстремальных условиях — оказались ключевыми для неожиданной сферы его применения. Ученые задействовали этот гриб для утилизации одного из самых проблемных промышленных загрязнителей — трибутилфосфата.

23 декабря, 10:51
Игорь Байдов

Среди самых интригующих открытий космического телескопа «‎Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.

24 декабря, 11:36
ПНИПУ

В России существуют тысячи рабочих мест с вредными и опасными условиями труда. На шахтах, металлургических заводах, в авиастроении люди годами находятся в условиях сильного шума, вибрации, запыленности и контакта с химикатами, что наносит серьезный ущерб здоровью. Однако существующие методы оценки рисков оказываются неэффективными для прогнозирования заболеваний, поскольку работают с усредненными показателями группы, а обязательные медосмотры определяют уже наступившую болезнь. Такая система лечит последствия, но не предотвращает причину. Ученые Пермского Политеха, управления Роспотребнадзора и ФНЦ медико-профилактических технологий управления рисками здоровью населения разработали программу, которая прогнозирует индивидуальные профессиональные риски здоровью для каждого конкретного работника с точностью 89%.

22 декабря, 09:20
Игорь Байдов

Согласно научным данным, на Земле живут 20 квадриллионов муравьев, что составляет примерно 2,5 миллиона муравьев на каждого человека. Ученые давно спорят, почему эти насекомые стали одними из самых многочисленных существ по числу особей. Авторы нового исследования, похоже, нашли ключ к разгадке.

8 декабря, 13:09
Александр Березин

С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.

17 декабря, 14:19
Игорь Байдов

На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.

29 ноября, 12:42
Александр Березин

Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?

[miniorange_social_login]

Комментарии

1 Комментарий
Проектирование - это хорошо, но полдела. Ожидаем также умения самостоятельно создавать спроектированное. 😏
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно