• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
01.03.2023, 11:43
ПНИПУ
472

Ученые Пермского Политеха улучшили обнаружение объектов нейронными сетями

❋ 4.6

Пожалуй, самая популярная и перспективная задача нейросетей — технологии распознавания образов. Они либо по отдельности, либо в интегрированном виде используются в таких сферах, как безопасность и наблюдение, сканирование и создание изображений, маркетинг и реклама, дополненная реальность и поиск изображений. Обучение — очень важная часть создания этой технологии. Слишком маленькое или наоборот большое количество данных в нейросети приводит к некорректной работе. Порой даже оптимальный размер данных может привести к плохим результатам, если объекты, по которым обучалась программа будут захвачены с одного ракурса или находятся на одном фоне. Сегодня специалистам приходится определять границы изучаемых объектов вручную в специальных программах. Этот процесс очень длительный и трудоемкий. Ученые Пермского Политеха создали программу с генератором случайных синтетических изображений, которая позволит обучать нейросеть быстрее.

Ученые Пермского Политеха улучшили обнаружение объектов нейронными сетями / ©Getty images / Автор: Ольга Кузьмина

Исследование опубликовано в сборнике International Conference on Applied Innovations in IT (ICAIIT). Чтобы облегчить работу IT-специалистам, которые обычно вручную создают фотографии для обучения нейросети, политехники разработали программу, которая генерирует синтетические картинки, комбинируя между собой изображения реального объекта с использованием 3D-камеры, натуралистичный фон и некоторые шумовые эффекты — помехи или предметы окружающей среды.

Например, для создания набора картинок с уличным фонарем программа дополнительно использовала ветви деревьев, которые частично закрывают светильник, а также дождь, слабую освещенность, дефекты камеры. Эти шумовые эффекты делают результирующее изображение более реалистичным. Качество обучения зависит от того, насколько равномерно перемешиваются данные и насколько разнообразные картинки получаются.

«Тестируя программу, мы постарались провести как можно больше экспериментов, чтобы получить максимально широкий обзор влияния синтетических данных на производительность нейронной сети. В испытании использовались наборы данных по 1000 и 2000 искусственных картинок. После чего мы заметили, что такое обучение дает низкое качество распознавания. По этой причине мы решили обучать нейросеть, смешивая синтетические данные с настоящими фотографиям», — сообщил доцент кафедры микропроцессорных средств автоматизации Леонид Мыльников.

«Наборы изображений по тематике на основе синтетических данных с небольшим количеством реальных фотографий улучшило качество обнаружения объекта нейросетью. Это решает проблему создания больших баз данных, необходимых для обучения сетей и значительно упрощает работу специалистов из ИТ сферы. Технология может применима и к движущимся изображениям», — рассказал аспирант кафедры «Информационные технологии и автоматизированные системы» Павел Сливницин.

В настоящее время политехники занимаются получением еще более реалистичных изображений, например, содержащих такие элементы, как эффекты коррозии и деформации изучаемого нейросетью объекта. Это будет способствовать дальнейшему улучшению качества обнаружения. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Пермский национальный исследовательский политехнический университет (национальный исследовательский, прошлые названия: Пермский политехнический институт, Пермский государственный технический университет) — технический ВУЗ Российской Федерации. Основан в 1960 году как Пермский политехнический институт (ППИ), в результате объединения Пермского горного института (организованного в 1953 году) с Вечерним машиностроительным институтом. В 1992 году ППИ в числе первых политехнических вузов России получил статус технического университета.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
17 февраля, 09:00
ТГУ

Ученые Томского государственного университета изучили историческую память современного человека и его восприятие событий Гражданской войны в России (1917–1922 годы). Эксперимент проводился с применением айтрекинговых технологий: испытуемым нужно было просмотреть визуальные образы и символы на плакатах эпохи Гражданской войны. Выяснилось, что люди старшего возраста интуитивно в большей мере симпатизируют красным, образ Белого движения размыт в сознании людей, и до сих пор в обществе нет ясного и однозначного отношения к Белой армии.

19 февраля, 13:04
Игорь Байдов

Для большинства людей боль утраты близкого человека со временем стихает. Но примерно у одного из 20 скорбящих все происходит иначе. Годы идут, а тоска не ослабевает — она словно консервируется, не давая человеку двигаться дальше. Долгое время психиатры спорили: столь длительное горевание — особенность психики или болезнь? Австралийские ученые нашли ответ, заглянув в мозг таких людей.

17 февраля, 14:25
Любовь С.

Пройдя перигелий 30 октября 2025 года — ближайшую к Солнцу точку на своей траектории, — 3I/ATLAS буквально взорвалась активностью: объект выбросил мощные потоки воды, монооксида углерода (СО), углекислого газа (СО₂) и органических молекул, превратившись в полноценную комету. Наблюдения с помощью космической обсерватории SPHEREx впервые позволили увидеть, как вещество из другой звездной системы начинает полностью испаряться под Солнцем, раскрывая свой изначальный химический состав.

17 февраля, 10:00
ФизТех

Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.

13 февраля, 13:18
Игорь Байдов

Приблизительно 4,5 тысячи лет назад в Британии произошла быстрая и масштабная смена населения. Неолитические народы, построившие Стоунхендж и большинство других памятников, практически исчезли, их заменили представители другой культуры. Долгое время археологи спорили, откуда пришли новые люди, которым так быстро удалось покорить остров. Ответ нашла международная команда генетиков.

17 февраля, 09:30
СПбГУ

Исследователи Санкт-Петербургского государственного университета разработали эффективный способ обнаружения в крови важнейшего биомаркера иммунитета — неоптерина — с помощью нанотехнологий и лазера.

12 февраля, 07:52
Адель Романова

Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.

28 января, 10:50
Игорь Байдов

Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.

26 января, 14:26
Александр Березин

Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно