Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Арктические микроводоросли установили абсолютный рекорд минимума света, достаточного для фотосинтеза
Группа европейских ученых, дрейфуя в Северном Ледовитом океане во время экспедиции MOSAiC, зафиксировала фотосинтез у подледных микроводорослей, которым хватило рекордно малого количества солнечного света. Новые данные опустили порог возможного фотосинтеза в четыре раза и приблизили его к теоретическому минимуму.
Львиную долю всей биомассы на Земле составляют растения — согласно подсчетам 2018 года, они занимают 80% всего живого. Для успешного существования растениям нужны условия, подходящие для фотосинтеза. Но большую часть поверхности планеты занимает вода, а в океанах и морях фотосинтез может происходить только в эвфотической зоне, слое, куда достают солнечные лучи. В этой толще образуется до 90% атмосферного кислорода, поэтому ее объем — ключевой фактор в расчетах первичной продукции, то есть органики в океане.
Нижняя граница эвфотической зоны проходит на глубине, куда проникает лишь 1% солнечного света, то есть 20 микромолей фотонов на квадратный метр в секунду (на поверхности этот уровень обычно равен 2000 микромолям). Хотя теоретически минимальное количество света для прироста органики должно составлять около 0,01 микромоля фотонов на квадратный метр в секунду, на практике еще не выяснили, насколько глубоко этот порог простирается, где точная граница, после которой фотосинтез невозможен.
Для водорослей, живущих подо льдами, фиксировали минимальные значения солнечного света в 0,17 микромоля фотонов на квадратный метр в секунду, что все еще выше теоретической границы. Однако недавно группа европейских исследователей Арктики обнаружила, что морские одноклеточные водоросли способны наращивать биомассу при среднесуточной освещенности, близкой к теоретическому минимуму. Этот уровень рекордный и на порядок ниже предыдущих наблюдений. Результаты научной работы опубликованы в журнале Nature Communications.

Арктическая экспедиция MOSAiC собирала данные с сентября 2019-го по октябрь 2020 года. Исследовательское судно дрейфовало по Северному Ледовитому океану вместе со льдинами, пока ученые собирали пробы водной толщи и морского льда. Затем специалисты измеряли, сколько микроводоросли синтезировали новых клеток, первичной продукции (по фиксации изотопа углерод-14), а также определяли концентрацию хлорофилла а — самой распространенной формы хлорофилла.
Последний метод показал, что фотосинтез у диатомовых водорослей начался 28 марта 2020 года — их пробы собрали с глубины 11 метров подо льдом — и продолжался следующие семь дней. Другие пробы с глубины 20 метров подтвердили эту дату: световая микроскопия выявила, что количество клеток диатомей (в основном Pseudo-nitzschia) увеличилась после 28 марта.
Далее ученые измерили уровень освещенности, при которой начался фотосинтез, в верхнем 50-метровом слое воды. Датчики зафиксировали, что 28 марта среднесуточный уровень солнечного света достигал 0,04 ± 0,02 микромоля фотонов на квадратный метр в секунду. После этого по экспоненте выросла концентрация хлорофилла а, что, как подчеркнули авторы статьи, стало прямой реакцией на появление света. Ведь другие источники энергии (дыхание и поглощение органики) были доступны зимой, но накопление биомассы началось именно на свету.
Если сравнить новые данные с предыдущими наблюдениями, то известный порог освещенности, при котором возможен фотосинтез, снизился в четыре раза и приблизился к теоретическому минимуму. В то же время почти вдвое углубилась зона, где этот процесс доступен, — с 23 до 54 метров (при учете коэффициента затухания).
Как отметили специалисты, результаты исследования доказывают, что эволюция до удивительной степени оптимизировала эффективность фотосинтеза.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Международная научная группа при участии МФТИ разработала композитный гель-полимерный электролит для аккумуляторов. Этот материал позволит создать безопасные высокомощные батареи, что важно для электромобилей, гаджетов и систем хранения энергии.
Исследователи НИУ ВШЭ — Санкт-Петербург обнаружили устойчивую взаимосвязь между движениями глаз и мозговой активностью при помощи искусственного интеллекта. В перспективе это открытие позволит точнее диагностировать болезни Альцгеймера, Паркинсона и расстройства аутистического спектра (РАС).
Ученые уверены, что покрытая водяным льдом юпитерианская луна Европа скрывает внутри себя глобальный океан, но сомневаются в его жизнепригодности. В недавнем исследовании они попытались оценить степень активности в недрах спутника и пришли к неутешительному выводу: тектоника там вряд ли способна обеспечить обогащение воды минералами.
Астрономы обнаружили еще одно неожиданное последствие недавнего эксперимента с астероидом Диморф: его крупный и массивный «хозяин» Дидим стал медленнее вращаться вокруг своей оси. Ученые подозревают, что на него так повлияли разлетевшиеся обломки.
Доставленный с обратной стороны Луны грунт произвел впечатление необычным изотопным составом. Планетологи пришли к выводу, что вещество там стало таким из-за падения гигантского астероида.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии