• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
03.08.2017, 18:39
Редакция Naked Science
574

Впервые получен спектр антиводорода

Спектр антивещества должен выглядеть совершенно так же, как для вещества обычного. Но пока в этом еще никому не удавалось убедиться.

alphaobserve
©Wikipedia / Автор: Михаил Григорьев

Ученым из коллаборации ALPHA, объединяющей 50 физиков из 17 институтов, удалось впервые наблюдать спектральные линии атома антиводорода.

 

Точно так же, как и привычное нам вещество, его антипод из антиматерии имеет набор спектральных линий, являющихся таким же характерным признаком, как отпечатки пальцев для человека. Он теоретически должен быть совершенно таким же, как спектр «нормального» вещества, и убедиться в этом было бы очень интересно. Но до сих пор спектр антивещества никто не наблюдал.

 

Проблема в том, что с антивеществом очень трудно работать. Любой контакт с обычной материей приводит к немедленной аннигиляции, после чего изучать становится нечего.

 

Антиматерию обычно содержат в специальных ловушках, где роль барьера играет электромагнитное поле. Добавим глубочайший вакуум и получим среду, в которой античастицы можно держать очень долгое, по меркам физики, время — сотни и даже тысячи секунд.

 

Использованная в описываемом опыте установка (см. рисунок) построена на основе известной среди специалистов ловушки Пеннинга. Пучки позитронов и антипротонов подаются в реакторную камеру с разных сторон, там смешиваются, и некоторая часть античастиц рекомбинирует, превращаясь в полноценные атомы антиводорода. Напомним, что антипротон — это, по сути, атомное ядро, ион антиводорода, которому не хватает только позитрона.

 

Впервые получен спектр антиводорода – иллюстрация к материалу на Naked Science

 

Схема экпериментальной установки для получения и удержания атомов антиводорода. / © Nature

 

Типичный состав ингредиентов, используемых для приготовления смеси, — 90 тысяч антипротонов и 1,6 миллиона позитронов. Из них за одну секунду получается порядка 25 тысяч атомов антиводорода — много меньше самой маленькой капли. Подавляющее большинство имеет слишком высокую кинетическую энергию, поэтому вылетает из ловушки и аннигилирует. Ловушка может удержать только атомы, энергия которых соответствует температуре менее 0,54 К. Таковых за один раз набирается всего около двух десятков. Поскольку этого все-таки маловато, смешивание повторяют несколько раз.

 

Получившееся антивещество облучается и поглощает волны определенных частот. Осталось только их измерить — и вот он, спектр. Разумеется, реальная работа с образцами, насчитывающими десятки атомов, выглядит совсем не просто, но описывать ее мы не будем. Желающие могут обратиться к статье, опубликованной сегодня в Nature.

 

Пока полученный спектр антиводорода выглядит так же, как спектр его «нормального» антипода. Ученые намерены провести дальнейшие эксперименты, увеличив чувствительность своей техники.

 

Когда-то во Вселенной было поровну вещества и антивещества. Затем что-то случилось и антивещество практически исчезло. Мы подробно писали об этом совсем недавно.

 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
15 ноября, 21:54
Редакция Naked Science

Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.

17 ноября, 09:26
Адель Романова

Расчеты показывают, что на лунную базу каждодневно будут падать десятки микрометеороидов, а даже самые мелкие из них способны повредить модуль и создать угрозу для астронавтов. Впрочем, для этой проблемы есть проверенное решение — так называемый щит Уиппла.

17 ноября, 08:45
Любовь С.

Четвертый вид вируса герпеса человека (HHV-4) — вирус Эпштейна — Барр — оказался связан с развитием системной красной волчанки. Результаты нового исследования показали, что вирус не просто присутствует в иммунных клетках пациентов, а целенаправленно «перепрограммирует» их, превращая в «драйверы» аутоиммунного воспаления.

15 ноября, 21:54
Редакция Naked Science

Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.

15 ноября, 10:10
Любовь С.

Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.

14 ноября, 11:27
Илья Гриднев

На уникальных древнеримских стеклянных сосудах обнаружили тайные знаки, которые оказались клеймами ремесленных мастерских. Эти символы, ранее считавшиеся простым украшением, раскрыли, как работали античные мастера, и помогли доказать существование аналогов современных брендов почти две тысячи лет назад.

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

24 октября, 14:02
РТУ МИРЭА

В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно