Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Уточнено происхождение рельефа Луны
Составлена новая подробная карта лунной поверхности, которая позволила окончательно утвердить метеоритную теорию.
Планетолог Хизер Мейер (Heather Meyer) из Lunar and Planetary Institut (Хьюстон, США) смогла составить новую карту лунной поверхности с учётом последних данных. Ранее подобное делалось лишь для отдельных областей.
Для ранее плохо изученных территорий, условно называемых «светлых равнин», были использованы данные, полученные при помощи аппарата Lunar Reconnaissance Orbiter. Это искусственный спутник Луны NASA, находящийся на окололунной орбите с лета 2009-го года. Данные, полученные с его помощью, позволили картографировать поверхность спутника Земли подряд.
Ранее же составленные карты опирались на данные, полученные от различных аппаратов, и «сшивались» вместе. Эта вынужденная особенность снижала достоверность, так как объекты, заснятые лишь с определённой стороны, могли быть неточно интерпретированы, и говорить о тщательном исследовании изменений состояния поверхности «светлых равнин» не приходилось.
Исторически возникли две основные модели образования лунного рельефа: вулканическая и метеоритная. Вулканическая была выдвинута в конце XVIII в. астрономом Иоганном Шретером, который предположил, что ранее раскалённая Луна постепенно остывала, и на её поверхности существовали вулканы, извержения которых и образовали кратеры. В начале XIX века Франц фон Груйтуйзен предложил иную теорию — метеоритную, согласно которой падающие крупные метеориты «продавливали» лунную поверхность. Разумеется, речь шла именно о крупных образованиях; понятно, что мелкие метеориты в любом случае имели место. Будущий русский профессор Кирилл Петрович Станюкович, будучи ещё студентом, в 1937 году показал, что метеорит, летя с космической скоростью, при столкновении с поверхностью производит взрыв, который буквально испаряет метеорит, в также часть пород в месте удара.
Некоторое время была популярна пылевая гипотеза американского астронома Томаса Голда, который считал, что Луна покрыта толстым слоем пыли (помните роман А. Кларка «Лунная пыль»?). Эта гипотеза была опровергнута после прилунения советской автоматической станции «Луна-9» в феврале 1966 года. Общепринятой сейчас является метеорно-шлаковая теория, разработанная в 1959 году Надеждой Николаевной Сытинской: энергия, выделяющаяся при ударе метеорита о поверхность Луны, помимо его расплавления и испарения, образует шлаки, которые проявляют себя в цветовых особенностях поверхности Луны.
Хотя метеоритная теория и является более признанной, вероятность вулканической оставалась всё же не нулевой. Лунные «моря» занимают около трети поверхности и очень напоминают по форме, согласно имевшимся наблюдениям, потоки базальтовой лавы. Однако последние данные, обработанные Х. Мейер, выявили наличие нескольких место больших столкновений с поверхностью, осколки от которых разлетелись далеко от эпицентра. Исследователь утверждает:
«Похоже, имеются просто гигантские отметки столкновений… Около 70% лунных равнин находятся в Восточном и аналогичных бассейнах… это говорит о том, что все они изменились в некий момент».
Дело в том, что новые данные позволили обнаружить, что некоторые малые кратеры заполнены «мусором», оставшемся от больших взрывов. Таким образом, большинство равнин можно интерпретировать как последствия выброса осколков поверхности из Восточного бассейна, который находится в Южном полушарии. Его размер — около 930 километров. «Наполненные» кратеры встречаются на расстоянии до 2000 км до эпицентра столкновения. Датировка события — приблизительно 3,8 миллиарда лет назад. Напоминаем, что образование Луны произошло 4,5 миллиарда лет назад.
Открытие имеет дополнительное следствие: для оценки возраста поверхности Луны учёные использовали количество малых кратеров. Поэтому, если часть их была уничтожена взрывами, датировка будет искажена.
К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Разработка ученых Института нанотехнологий, электроники и приборостроения ЮФУ потенциально может найти применение в производстве экологически чистого топлива и накопления энергии. Кроме того, технология может значительно повысить эффективность расщепления воды, способствуя переходу к устойчивой энергетике.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Ученые применили современные методы, такие как микрокомпьютерная томография, получили сотни рентгеновских изображений и создали 3D-модель. Все для того, чтобы обнаружить следы опухоли во внутренней части черепа человека, жившего в середине IV века нашей эры. Это самый ранний случай менингиомы на Пиренейском полуострове — из тех, что известны науке.
К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.
Вопреки предсказаниям, кислород-28 оказался крайне неустойчивым. Физики не успели даже зарегистрировать такие ядра, хотя теоретически они должны быть дважды магическими, а значит — особенно стабильными.
Тотальная память — плохо для мозга. Чтобы детально запомнить событие, стоит о нем вспоминать как можно реже. Чем больше вы знаете по теме, тем больше новой информации вы запомните. Но если информации будет слишком много, то не вся она будет зафиксирована в мозге. Naked Science разбирается, как сегодня ученые, нейробиологи и психологи объясняют способности нашего мозга запоминать и учиться.
Американский поэт и литературный критик Адам Кирш в эссе, опубликованном в The Guardian, рассуждает о том, как новые представления о возможностях животного разума меняют нас самих.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии