Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые смогли наблюдать за лабораторными животными без установки меток
Разработана система автоматического отслеживания перемещений и движений лабораторных животных, для которой не требуется установка меток.
Американские и немецкие ученые совместно разработали систему автоматического слежения за лабораторными животными — DeepLabCut. Теперь исследователи следят за перемещениями и действиями подопытных, не ставя на них метки.
Традиционно видеонаблюдение дает много материала для научной работы с животными, но и занимает достаточно времени. Просмотр записей — длительная процедура, которую не всегда можно ускорить. Отличать животных друг от друга трудно, и на них приходится ставить метки. Если пометить крысу цветными пятнами легко, то с мелкими насекомыми возникает проблема. Кроме того, животные стирают метки.
Проблема распознавания отдельных особей с маркерами давно решена, также используют тепловые сигнатуры — они хорошо подходят для крупных животных на свободе. Если же эксперимент требует следить за отдельными конечностями или другими частями животного, то задача многократно усложняется. Сам ученый легко распознает детали на видео, но вынужден просматривать записи в реальном времени. Для автоматического распознавания движений пальцев метки придется ставить очень тесно. Крепления при этом сложно сделать надежно, так как животные будут их грызть.
Коллектив ученых во главе с Маттиасом Бетге (Matthias Bethge) отказался от меток, решив использовать нейросети. Метод прост: снимки размечают вручную с указанием точек, которые затем отслеживает программа. Нейросеть обучают, и она определяет для каждого пикселя изображения вероятность появления соответствующей части тела с учетом положения животного в пространстве. Число снимков, которые нужно разметить вручную, невелико: уже со ста система работает уверенно, исследователи рекомендуют для надежности разметить 200 кадров.
Ученые использовали сверточную нейронную сеть (convolutional neural network, CNN), строение которой аналогично работе зрительной коры человека. Поэтому такая архитектура сети хорошо подходит для распознавания образов. Специалисты дополнительно применили метод глубокого обучения (deep learning) с использованием технологии DNN (Deconvolutional Neural Networks). Параметры и фильтры, сформированные в процессе обучения CNN, используют для первичной обработки сигналов, что улучшает распознавание объектов.
Специалисты провели два эксперимента на мышах и один на дрозофилах.
Бег грызуна по бумажной катушке с «нарисованной» запахом дорожкой изучали при первом опыте. Видеозапись специально осложняли помехами: неоднородное освещение, динамические тени от животного, искажения от широкоугольного объектива. Во время бега мышь часто пересекала след и поворачивала.
Для опыта использовали семь мышей. Съемку вели две камеры, 640×480 и 1700×1200 пикселей, с частотой 30 Гц. Кадры с высоким разрешением чрезмерно велики для обработки, поэтому их обрезали до размера 800×800 пикселей вокруг изображения мыши. Ученые взяли 1080 случайных кадров из разных съемок и проставили метки на морду, кончики ушей и основание хвоста.
На видео зеленые и голубые точки показывают 30 будущих и прошлых позиций морды с периодичностью в 33,3 миллисекунды. Пурпурные ромбы обозначают расположение тела и морды с ушами в прошлом. Вместе эти четыре точки определяют направление тела и головы мыши. Дорожка с запахом нарисована серым цветом.
При втором исследовании отслеживали движения передней лапки мыши. Предварительно зверьков научили за вознаграждение тянуть специальный рычаг. Метки при таком наблюдении использовать практически невозможно.
В эксперименте использовали пять мышей. Съемка велась на камеру с разрешением 2048×1088 пикселей и частотой 100-320 кадров в секунду. Исследователи разметили 159 кадров, на каждом пальце было по четыре метки: на кончике, межфаланговом и пястно-фаланговом суставах, основании запястья. Изображение обрезали до области, содержащей нужное движение. Видео наглядно демонстрирует возможности метода.
Третий опыт — мониторинг поведения дрозофил во время яйцекладки. В этом случае нанесение меток крайне затруднительно из-за размера мушек. На кадрах разметили 12 точек: четыре на голове, семь на тельце и одну на яйцекладке. Метод отлично работал и в этом случае.
Вычисления каждого эксперимента требовали около полумиллиона шагов обучения нейросети, что заняло от 24 до 36 часов работы видеокарты NVIDIA GTX 1080 Ti.
Ученые выложили программу вычислений в свободный доступ.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Периодически нейросети в своих ответах галлюцинируют, предлагая пользующимися их услугами людям выпить яд под видом лекарства и так далее. Новая научная работа показала, что эта проблема связана с самой природой нейросети. Хотя ее вероятность можно понизить, устранить полностью невозможно.
На юго-востоке Чехии археологи обнаружили не просто отдельные артефакты, а целый набор инструментов, который 30 тысяч лет назад носил с собой охотник-собиратель. Открытие дает представление о повседневной жизни этих людей, населявших территорию современной Центральной Европы.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии