Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые дали возможность ощущать больному с парализованными конечностями
Американские ученые, воздействуя на мозг парализованного, смогли имитировать ощущения, близкие к естественным, в парализованных конечностях.
Группа ученых под руководством Ричарда Андерсена (Калифорнийский технологический институт, США) заставила парализованного больного, потерявшего чувствительность кожи, вновь чувствовать.
Для этого они использовали микроэлектроды, которые вживили в область первичной соматосенсорной коры головного мозга.
Она располагается в извилине коры, позади центральной борозды. У этой области есть уникальное свойство: точкам на ее поверхности соответствуют участки кожи по всему телу. Именно соматосенсорная кора обрабатывает сигналы от кожных рецепторов, и человек чувствует изменение температуры, давление или боль. Этот же участок «отвечает» и за ощущение собственного тела в пространстве.
Если поврежден спинной мозг, то связь между рецепторами и соматосенсорной корой разрывается. При таком параличе теряется не только подвижность, но и чувствительность конечностей. Сама кора мозга не затрагивается, но к ней не поступают сигналы. Хотя такая травма неизлечима, можно стимулировать кору напрямую, и человек будет испытывать ощущения, подобные естественным. Этот эффект известен давно, однако ранее ученые применяли достаточно грубое раздражение электрическим током: ощущения возникали неестественные, причем с дополнительными «шумами» — в виде покалываний или незначительных ударов током.
Исследователи решили использовать вживленные в мозг микроэлектроды. Такой подход увеличивал точность стимуляции и позволял уменьшить силу тока.
Эксперимент проводили на больном, парализованном ниже шеи вследствие травмы спинного мозга. Два имплантата с микроэлектродами вживили в область соматосенсорной коры.
Конечно, вызываемые при стимуляции ощущения не были полностью идентичны естественным, но эксперимент дал интересные результаты. Не все электроды вызывали чувствительность (46 из 96, 48%), однако отклик был стойким, а ложные «срабатывания» не наблюдались. Влияния предыдущих стимуляций на последующие не наблюдалось, реакция была схожа с естественной: поступает определенный сигнал, в результате возникает соответствующее ощущение. Осложнений и болевых ощущений не было ни во время эксперимента, ни после.
На рисунке слева (А) показаны зоны, в которых возникали ощущения передней (светлые оттенки) и задней (темные оттенки) сторон руки и кисти (голубой цвет). Правее показано, какие именно микроэлектроды на электродных решетках имплантата соответствуют этим зонам. На схеме справа обозначен вид испытываемых ощущений: красным цветом показана кожная чувствительность, синим — проприоцептивная, то есть ощущения тела в пространстве. Как видно на рисунке, некоторые электроды вызывали смешанное ощущение. Кожные ощущения вызывало стимулирование 45% электродов, 32% вызывали ощущение движения, а 23% — оба вида ощущений.
Больной во время эксперимента четко описывал свои ощущения, которые были разнообразными и соответствовали естественным: нажатия, постукивание, движение руки.
Эксперимент наглядно показал преимущество стимуляции вживленными микроэлектродами — чувства были практически настоящими и при этом четкими, без «шума». В дальнейшем исследовательская группа намерена составить подробную карту для электростимуляции, точно определив участки коры и соответствующие им ощущения.
Исследование имеет большое значение для разработки нейроинтерфейсов и бионических протезов конечностей.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Квантовые спиновые жидкости (КСЖ) обещают ученым развитие в областях квантовых вычислений и передачи энергии без потерь. В них магнитные моменты частиц теоретически не должны упорядочиваться даже при охлаждении до абсолютного нуля температур.
Состояние паралича, в которое впадают разные виды животных, хорошо известно и задокументировано. Обычно оно считается защитной реакцией в случае опасности, но никаких доказательств этому до сих пор нет. Особенно загадочным остается поведение обитателей океана, притворяющихся мертвыми. Ученые проверили существующие объяснения этого эффекта и сделали неожиданные выводы.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Состояние паралича, в которое впадают разные виды животных, хорошо известно и задокументировано. Обычно оно считается защитной реакцией в случае опасности, но никаких доказательств этому до сих пор нет. Особенно загадочным остается поведение обитателей океана, притворяющихся мертвыми. Ученые проверили существующие объяснения этого эффекта и сделали неожиданные выводы.
Квантовые спиновые жидкости (КСЖ) обещают ученым развитие в областях квантовых вычислений и передачи энергии без потерь. В них магнитные моменты частиц теоретически не должны упорядочиваться даже при охлаждении до абсолютного нуля температур.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии