Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработана новая прогностическая модель на основе больших данных
Команда испанских исследователей разработала надежную модель, использующую меньшие объемы больших данных для точных и эффективных прогнозов.
Технология развивается гигантскими скачками, а вместе с ней — информация, с которой ежедневно взаимодействует общество. Объем данных должен быть организован, проанализирован и коррелирован для предсказания определенных закономерностей. Это одна из главных функций больших данных.
Исследовательская группа KIDS с кафедры информатики и численного анализа Университета Кордовы смогла улучшить модели, предсказывающие несколько переменных одновременно, основываясь на наборе введенных переменных, тем самым уменьшая объем данных, необходимых для точного прогноза. Один из примеров такого прогноза — метод, предсказывающий несколько параметров, связанных с качеством почвы на основе набора переменных, таких как посаженные культуры, обработка почвы и использование пестицидов. Статья об исследовании опубликована в журнале Integrated Computer-Aided Engineering.
«Когда вы имеете дело с большим объемом данных, есть два решения. Вы либо увеличиваете производительность компьютера, что очень дорого, либо уменьшаете количество информации, необходимой для надлежащего выполнения процесса», — говорит один из авторов проведенного исследования Себастьян Вентура.
При построении прогностической модели надежные результаты зависят от двух факторов: количества задействованных переменных и числа примеров, введенных в систему. Исследователям удалось уменьшить количество примеров, исключив те, что были «шумными» или избыточными, следовательно, не несли никакой полезной информации для создания лучшей прогностической модели.
Как отметил ведущий автор исследования Оскар Рейес, они разработали технику, способную указать, какой набор примеров необходим, чтобы прогноз был не только надежным, но и наилучшим. В некоторых базах данных из 18 проанализированных ученые смогли уменьшить объем информации на 80 процентов, не повлияв на прогностическую производительность: другими словами, было использовано меньше половины оригинальных данных.
По словам Рейеса, так можно сэкономить энергию и деньги при построении модели, ведь потребуется меньше вычислительной силы. Это сохранит и время, что важно в моделях, работающих в реальном времени, потому что нет смысла создавать модели, выдающие результат раз в полчаса, когда прогноз нужен каждые пять минут.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Квантовые спиновые жидкости (КСЖ) обещают ученым развитие в областях квантовых вычислений и передачи энергии без потерь. В них магнитные моменты частиц теоретически не должны упорядочиваться даже при охлаждении до абсолютного нуля температур.
Состояние паралича, в которое впадают разные виды животных, хорошо известно и задокументировано. Обычно оно считается защитной реакцией в случае опасности, но никаких доказательств этому до сих пор нет. Особенно загадочным остается поведение обитателей океана, притворяющихся мертвыми. Ученые проверили существующие объяснения этого эффекта и сделали неожиданные выводы.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Состояние паралича, в которое впадают разные виды животных, хорошо известно и задокументировано. Обычно оно считается защитной реакцией в случае опасности, но никаких доказательств этому до сих пор нет. Особенно загадочным остается поведение обитателей океана, притворяющихся мертвыми. Ученые проверили существующие объяснения этого эффекта и сделали неожиданные выводы.
Квантовые спиновые жидкости (КСЖ) обещают ученым развитие в областях квантовых вычислений и передачи энергии без потерь. В них магнитные моменты частиц теоретически не должны упорядочиваться даже при охлаждении до абсолютного нуля температур.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии