• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
29.10.2018
Редакция Naked Science
416

Искусственный интеллект научится оптимизировать дорожный трафик и снижать загрязнение воздуха

Искусственный интеллект, обеспечивающий плавный трафик машин, следящий за расходом топлива и предотвращающий загрязнение воздуха, — звучит из серии научной фантастики. Тем не менее работники Национальной лаборатории им. Лоуренса в Беркли намерены претворить это в жизнь.

maxresdefault_1
©Wikipedia / Автор: Ирина Мельникова

Ученые дали старт двум исследовательским проектам, призванным снизить загрязнение окружающей среды и оптимизировать движение машин на дорогах. Первый проект посвящен попыткам обучить автономные транспортные средства работать так, чтобы одновременно улучшить поток движения и сократить потребление энергии. Второй проект анализирует спутниковые изображения и информацию о дорожной ситуации, полученную с мобильных телефонов, и обучает искусственный интеллект следить за состоянием воздуха. Описание проектов доступно на сайте лаборатории.

 

«Тридцать процентов использования энергии в США — это транспортировка людей и товаров, это потребление энергии сильно загрязняет воздух. Сюда входит примерно половина всех выбросов оксидов азота и черного углерода (сажи). Применение технологий машинного обучения для использования в сфере транспорта и защиты окружающей среды — новый рубеж, который может принести значительные дивиденды как для экономии энергии, так и для здоровья человека», — утверждает член исследовательской группы Том Кирхстеттер (Tom Kirchstetter).

 

Проект, посвященный оптимизации трафика, получил название CIRCLES (Congestion Impact Reduction via CAV-in-the-loop Lagrangian Energy Smoothing) и основан на программной платформе под названием Flow — первой в своем роде программной системе, которая позволяет исследователям создавать и тестировать схемы оптимизации трафика. Используя современный микросимулятор с открытым исходным кодом, Flow может имитировать движение сотен тысяч автомобилей, лишь некоторыми из которых управляют люди.

 

Спонтанные волны трафика в движении с 22 водителями/© Lawrence Berkeley National Laboratory
 

Система обучает автомобили на искусственном интеллекте следить за тем, что делает машина непосредственно перед ними и за ними. По словам ученых, Flow уже способен на многое: он может ускорить или замедлить скорость, а также изменить полосу движения. Опираясь на разные сигналы — например, стоит ли трафик или движется плавно, — система пытается оптимизировать дорожное движение. Команда проекта CIRCLES планирует провести несколько симуляций, чтобы убедиться, что значительная экономия энергии обусловлена использованием алгоритмов в автономных транспортных средствах. Затем исследователи будут запускать реальный эксперимент с людьми за рулем, реагирующими на команды системы в реальном времени.

 

Второй проект — DeepAir (Deep Learning and Satellite Imaginary to Estimate Air Quality Impact at Scale) — возглавляет Марта Гонсалес (Marta Gonzalez), опирающаяся на свое предыдущее исследование, в котором она использовала данные с мобильных телефонов, изучая маршруты, по которым люди перемещаются по городам, чтобы составить оптимальный план расположения зарядных устройств для электромобилей.

 

«Новизна проекта в том, что, хотя экологические модели, которые отображают взаимодействие загрязняющих веществ с погодой — такие как скорость ветра, давление, осадки и температура, —разрабатывались в течение многих лет, им все еще не достает многих частей, таких как выбрасываемые отходы от транспортных средств и электростанций», — говорит Гонсалес.

 

Один автомобиль с управлением, разработанным Flow, обеспечивает плавное движение трафика/© Lawrence Berkeley National Laboratory
 

Исследователи ожидают, что новые данные позволят им получить информацию об источниках и распределении загрязняющих веществ, что в конечном итоге поможет разработать более эффективные и своевременные меры по предотвращению экологических катастроф. 

 

Несмотря на то что идея использования алгоритмов для управления дорожным трафиком может показаться невероятной, ученые считают, что технологии уверенно движутся в этом направлении и через 10 лет это может стать обычным явлением.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Вчера, 18:26
Татьяна

Исследуя глубоководные сообщества в районе Тихого океана, богатом железомарганцевыми конкрециями, ученые из Великобритании неожиданно обнаружили новый источник кислорода. Теперь они опасаются, что разработка этих месторождений может нарушить сложившиеся экосистемы.

Вчера, 16:20
Татьяна

Врачи давно знают, что во время каникул и праздников растет число пациентов с нарушениями работы сердца. Причина — в неумеренном пьянстве. Две группы ученых показали, как спиртное вызывает мерцательную аритмию, а также предупредили о рисках для женщин, принимающих гормональную заместительную терапию.

9 часов назад
Алиса Гаджиева

Во время раскопок на юге Турции археологи обнаружили глиняную табличку с хорошо читаемой аккадской клинописью. Когда ее расшифровали, оказалось, что это важные хозяйственные записи, сделанные 3500 лет назад.

Вчера, 18:26
Татьяна

Исследуя глубоководные сообщества в районе Тихого океана, богатом железомарганцевыми конкрециями, ученые из Великобритании неожиданно обнаружили новый источник кислорода. Теперь они опасаются, что разработка этих месторождений может нарушить сложившиеся экосистемы.

Вчера, 16:20
Татьяна

Врачи давно знают, что во время каникул и праздников растет число пациентов с нарушениями работы сердца. Причина — в неумеренном пьянстве. Две группы ученых показали, как спиртное вызывает мерцательную аритмию, а также предупредили о рисках для женщин, принимающих гормональную заместительную терапию.

17 июля
Игорь Байдов

Команда китайских инженеров разработала модель магнитоэлектрического генератора, способного эффективно преобразовывать энергию падающих капель в электричество. Устройство может быть полезно для районов с повышенной сезонной влажностью. Разработка ученых в теории выглядит перспективно, но вызывает некоторые вопросы. В частности, пока не ясно, можно ли найти ей практическое применение.

25 июня
Игорь Байдов

Ученые из Китая и Бельгии воссоздали в лаборатории условия, существовавшие на Меркурии четыре миллиарда лет назад, и выяснили, что они были идеальными для образования слоя алмазов, который с течением времени становился лишь толще.

1 июля
Александр Березин

Необычный биологический вид, по оценке авторов новой научной работы, пригоден для заселения четвертой планеты без каких-либо предварительных условий — уже в том виде, в котором он существует сейчас. Поскольку речь идет о фотосинтетическом организме, он способен нарабатывать существенное количество кислорода. Интересно, что кандидат на терраформирование Марса сохранил жизнеспособность после месяца в жидком азоте.

12 июля
Александр Березин

Falcon 9 Block 5 впервые за три сотни запусков дал частично неудачный полет. Ракета выводила 20 спутников компании SpaceX, с 15 связь уже пропала, еще пять могут быть потеряны в ближайшее время.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно