Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые смоделировали высоковольтный разряд перед сверхзвуковым самолетом
Ученые из МФТИ совместно с коллегами из Принстонского университета смоделировали взаимодействие высоковольтного стримерного разряда с ударной волной. Полученные данные помогут более точно моделировать условия вокруг сверхзвуковых самолетов и космических кораблей.
Такая волна образуется при разгоне летательного аппарата до скорости выше звуковой. Оказалось, когда разница плотностей газа по разные стороны волны превышает 20%, разряд не может ее преодолеть и начинает распространяться вдоль самой волны. Полученные данные помогут более точно моделировать условия вокруг сверхзвуковых самолетов и космических кораблей. Результаты работы опубликованы в журнале Plasma Sources Science and Technology.
Стримерные разряды в неоднородных газовых средах можно наблюдать в естественных условиях. В атмосфере Земли возникают разряды, которые распространяются от поверхности земли к ионосфере и в обратном направлении. Плотность воздуха на пути распространения таких разрядов изменяется в десятки и сотни раз. Благодаря этому в верхних слоях атмосферы рождаются возбужденные плазменные области в форме колец (эльфы) и струй (джеты и спрайты) (рисунок 1).

На относительно небольших высотах (до 10 километров) разряды в атмосфере Земли распространяются в виде стримерно-лидерных структур, которые приводят к возникновению хорошо известного молниевого разряда. Такие разряды могут вывести из строя электронику самолета или космического корабля. 90% ударов молний в эти объекты происходит из-за электрических пробоев, которые инициирует сам летательный аппарат.
Импульсные высоковольтные разряды часто используют в аэродинамике для управления воздушным потоком. При помощи быстрого нагрева небольшого объема газа можно управлять турбулизацией потока, отрывными и нестационарными течениями, а также конфигурацией ударных волн перед объектами, движущимися в атмосфере со сверхзвуковой скоростью. Неравновесное возбуждение газа импульсными разрядами позволяет эффективно управлять горением топливных смесей, которые могут включать газовые струи, аэрозоли или капли. Поэтому изучение взаимодействия разрядов с ударными волнами и другими неоднородностями газа имеет большое практическое значение.
В своей работе ученые рассмотрели случай, когда стримерный разряд пересекает ударную волну. Исследователи изучали взаимодействие плазмы с ударной волной как экспериментально (рисунок 2), так и с помощью численного моделирования одиночного пробоя. Он распространялся в 15-сантиметровом воздушном промежутке. Плотность модельного газа изменялась ступенчато от положительного электрода до отрицательного.

Отрицательным электродом была плоская пластина, а положительным — пластина с иглой в центре, на кончике которой инициировался разряд. Ученые поднимали напряжение на зазоре за 1 наносекунду до 100 кВ, а затем оставляли постоянным на этом уровне. Распространение волны ионизации газа в самосогласованном электрическом поле происходило за счет лавинной ионизации газа на фронте волны и фотоионизации перед ней. Ученые наблюдали за поведением такой волны ионизации при пересечении границ областей газа разной плотности.
Николай Александров, профессор МФТИ, главный научный сотрудник лаборатории импульсных плазменных систем МФТИ, комментирует: «Сделанное нами моделирование стримерного разряда в сильно неоднородном газе показало, что его характеристики резко меняются при достижении границы между участками с различной плотностью. В случае распространения плазмы из области с высокой плотностью газа в разреженную область, диаметр канала увеличивается, а электрическое поле в головке разряда уменьшается.
При движении в противоположном направлении разряд ведет себя иначе. Если разница параметров небольшая, разряд свободно проходит в газ с более высокой плотностью. Когда ее увеличение превышает 20%, движение разряда в первоначальном направлении блокируется. В результате он начинает развиваться в виде плазменного “блина”, “растекающегося” вдоль границы раздела областей газа».
Ученые также рассмотрели случай, когда волна ионизации проходит через неоднородности, в которых плотность газа меняется плавно. Результаты расчетов показывают, что наличие переходной части, длина которой значительно превышает диаметр стримерного разряда, позволяет ему плавно изменять форму и продолжать движение без резких изменений скорости и диаметра канала. Уменьшение длины градиента плотности до характерного диаметра плазменного канала приводит к значительным изменениям параметров разряда. Когда же толщина переходной области заметно меньше диаметра стримера, градиент плотности газа оказывает почти такое же влияние на распространение тока, как и разрыв бесконечно малой толщины.
Исследователи нашли условия, когда газообразная среда на короткое время перестает проводить ток в выделенном направлении. Разрыв в плотности среды «от разреженного газа к плотному» формирует своего рода «газодинамический диод» — удивительное физическое явление, когда газовый разряд может развиваться в одном направлении и не может в обратном.
«Газодинамический диод» останавливает развитие разряда в направлении электрического поля и перенаправляет плазменный канал вдоль границы раздела областей разной плотности, блокируя замыкание разрядного промежутка. В обратном направлении плазменный канал развивается лишь с незначительными изменениями скорости его распространения, в результате чего происходит перекрытие промежутка между электродами, приводящее к формированию проводящего канала между электродами.
Полученные результаты позволят лучше моделировать процессы управления газовыми потоками вокруг сверхзвуковых и гиперзвуковых летательных аппаратов.
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Фотополимер — специальный пластик для высокоточной 3D-печати. Часто применяется в ювелирном деле, медицине и особенно в литейной промышленности, позволяя создавать сложные детали с внутренними каналами, например, турбинные лопатки. Однако в процессе термообработки до 450°C, необходимой для выжигания прототипа, материал расширяется, вызывая микротрещины в керамической форме. Это приводит к браку при заливке металлом. Применяемые сегодня расчетные модели не учитывают, что при нагреве меняется вязкоупругое поведение фотополимера — сочетание его упругости и способности течь, — что и вызывает ошибки прогнозирования и производственные дефекты. Для решения этой проблемы ученые Пермского Политеха разработали принципиально новую программу, которая принимает в расчет оба этих ключевых параметра и предсказывает поведение пластика на 97%.
Что стало настоящим фундаментом власти — умение обрабатывать землю или контроль над некоторыми культурными растениями? Авторы нового исследования пришли к выводу, что появление первых крупных сообществ и государств зависело не от земледелия в целом, а от выращивания определенных злаков. Эти культуры было легко хранить и, еще важнее, невероятно просто облагать налогом, что и дало толчок появлению цивилизации.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.
Ученые разработали штамм цианобактерии, способный поглощать в три раза больше фосфора из сточных вод
Фосфор – элемент, играющий ключевую роль в росте растений. В сельском хозяйстве он используется в составе многих минеральных удобрений. В то же время фосфор, содержащийся в сточных водах — серьезный загрязнитель, который при попадании в водоемы нарушает баланс экосистем и вызывает цветение водорослей. Ученые Национального исследовательского центра «Курчатовский институт» и Южного федерального университета предложили новый экологичный способ выделения фосфора из сточных вод с помощью фотосинтезирующих микроорганизмов.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии