Глубокую нейросеть научили «помнить» прошлый опыт — Naked Science
16.03.2017
Редакция

Глубокую нейросеть научили «помнить» прошлый опыт

Британские ученые разработали компьютерный алгоритм, который позволяет искусственным нейросетям обучаться, сохраняя «память» о предыдущем опыте. Подробности исследования представлены в журнале Proceedings of National Academy of Sciences (PNAS).

logo
©Wikipedia

В настоящее время глубокие искусственные нейросети являются одним из наиболее перспективных вариантов реализации машинного обучения. Так, алгоритмы, обученные подобным образом, лучше других справляются с распознаванием изображений и освоением настольных игр. Тем не менее, они по-прежнему значительно уступают биологическим аналогам: в частности, глубокие нейросети не способны сохранять приобретенные ранее навыки при обучении новым задачам. Этот феномен, получивший название «катастрофической забывчивости» (catastrophic forgetting), делает невозможным последовательную тренировку одной и той же нейросети на нескольких задачах.

 

Чтобы восполнить пробел, ученые из Имперского колледжа Лондона и компании DeepMind предложили использовать метод, который позволяет искусственно повышать устойчивость ключевых весов для первой задачи при обучении второй. Технически это осуществляется так: при последовательном обучении нейросети каждому весу (он определяет, насколько тот или иной нейрон значим для ответа системы) дополнительно присваивается параметр F, определяющий его значимость только для определенной задачи. При этом значение F прямо пропорционально устойчивости веса к изменениям. Таким образом, алгоритм сохраняет «память» о самых важных навыках, приобретенных прежде.

 

Принцип работы алгоритма: при обучении задаче B, веса, актуальные для задачи A, блокируются / ©DeepMind

 

Предложенный подход получил название «упругое закрепление весов» (elastic weight consolidation) по аналогии с пружиной, жесткость которой сопоставима с параметром F. В случае нейросети «натяжение» происходит от веса, оптимального для задачи A, к весу, оптимальному для задачи B. В результате функция потерь (энергия пружины) возрастает, и менее значимые веса адаптируются к новой задаче, тогда как важные для предыдущих задач веса, предположительно, остаются неизменными.

 

Испытания алгоритма проводились на двух задачах: обучении с подкреплением и обучении с учителем. В последнем случае нейросеть тренировалась распознавать рукописные цифры, причем авторы последовательно вносили в стимулы искажения, чтобы каждый новый шаг требовал обучения «с нуля». В рамках обучения с подкреплением алгоритм обучался играть в игры приставки Atari 2600, систематически осваивая новые стратегии поведения.

 

Игровые очки, полученные нейросетью при обучении новым методом (красный цвет) и методом градиентного спуска (синий цвет) / ©James Kirkpatrick et al., PNAS, 2017

 

Анализ показал, что алгоритму удалось сохранить «память» о весах, необходимых для выполнения предыдущих задач. В каждом отдельном случае эффективность нейросети снижалась, однако по сумме этапов она демонстрировала хорошие результаты. При обучении методом градиентного спуска, позволяющим стирать веса при тренировке на новой задаче, алгоритм успешно справлялся с выполнением отдельных этапов, но оказался не способен удовлетворительно воспроизвести прошлый опыт.

 

Между тем ученые активно работают над приложением «умных» алгоритмов к практическим задачам. Ранее израильские специалисты начали разработку нейросети для автоматизированной диагностики автомобилей, а их японские коллеги объявили о создании системы, которая может заменить офтальмологов. Кроме того, широкое применение нейросети могут получить в правовой сфере. Так, накануне исследователи обучили компьютерный алгоритм с относительно высокой точностью распознавать преступный умысел человека.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
8 часов назад
Александр Березин

СМИ всего мира принялись рассказывать, что новые штаммы возникли из-за ослабления ограничений, снятия масок, а то и под воздействием вакцин. Якобы те оказали эволюционное давление, заставляющее вирус обходить вакцинную защиту. Увы, реальная биология указывает на совсем иную — и более устрашающую — картину. Разбираемся в деталях.

30 июля
Мария Азарова

Генеральный конструктор «Энергии» и руководитель полета российского сегмента МКС Владимир Соловьев назвал причину незапланированного включения двигателей нового модуля «Наука», из-за которого станцию развернуло на 45 градусов.

31 июля
Василий Парфенов

Изучение загадочной короны черной дыры, образованной рентгеновским излучением, преподнесло интересное открытие. Космические телескопы XMM-Newton и NuSTAR смогли «увидеть» свет, отраженный веществом сразу позади невероятно массивного объекта. И хотя это очередной раз подтверждает общую теорию относительности, про основной объект исследований ученые почти не получили новых данных.

27 июля
Сергей Васильев

Окаменелости возрастом более 3,4 миллиарда лет могут быть остатками микробов-архей, живших и выделявших метан у гидротермальных источников на дне ископаемого моря.

25 июля
Мария Азарова

Ученые подтвердили связь между коронавирусной инфекцией и снижением когнитивных способностей на основе анализа данных более чем 81 тысячи человек.

28 июля
Мария Азарова

Член Северо-Западной организации Федерации космонавтики России Александр Хохлов рассказал о проблемах, сопровождающих модуль «Наука» на пути к МКС, и объяснил, почему на долгожданную стыковку будет всего одна попытка.

25 июля
Александр Березин

До массовой термоядерной энергетики 20 лет — и всегда будет 20 лет. Это незатейливая шутка сама стала старой еще 20 лет назад. Общество расстраивается от того, что термояд все никак не могут вывести на промышленный уровень. И лишь Илон Маск считает, что термоядерный реактор вовсе не нужен. Внимательный анализ показывает, что он прав. Даже если все технические проблемы термоядерной энергетики чудесным образом разрешатся, у нее не будет шансов вытеснить конкурентов. Как так вышло, и что тогда спасет человечество от энергетического кризиса?

13 июля
Ольга Иванова

Международная команда ученых идентифицировала ДНК из почвы в грузинской пещере. Благодаря этому исследователям удалось восстановить геном человека возрастом 25 тысяч лет, не имея никаких скелетных останков.

8 июля
Василий Парфенов

Подросток из бельгийского города Остенде стал вторым самым юным обладателем высшего образования в обозримой истории. Он с отличием окончил курс физики в Антверпенском университете и теперь собирается защитить магистерскую степень, а затем и докторскую диссертацию в этой области. Цель у него простая и понятная: увеличение продолжительности жизни человека вплоть до полного бессмертия за счет замены частей тела и органов механическими или искусственными.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: