Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Глубокую нейросеть научили воображению
Специалисты из японской компании ATR Computational Neuroscience Laboratories научили глубокую нейросеть предсказывать неизвестное психическое содержание на основании томограмм.
Поскольку анализ мозговой активности является трудоемким и не всегда обеспечивает высокую надежность диагностики, ученые работают над его автоматизацией. Прошлые эксперименты показали, что существующие алгоритмы машинного обучения позволяют создавать искусственные нейросети, которые могут реконструировать увиденное и воображаемое человеком с помощью снимков, сделанных путем функциональной магнитно-резонансной томографии (фМРТ). Но, как правило, такие декодеры не способны предсказать психическое содержание, соответствующее незнакомым стимулам. Это накладывает на технологию фундаментальное ограничение, делая нейросеть зависимой от тренировок.
Авторы новой работы разработали глубокую нейросеть, которая позволяет воспроизводить психическое содержание несмотря на сравнительную новизну стимулов. На первом этапе ученые обследовали пятерых человек — вместо большой выборки они согласно современным протоколам поведенческих МРТ-экспериментов привлекли хорошо подготовленных испытуемых. Находясь в томографе, они просматривали две группы изображений из базы ImageNet: 1200 из 150 категорий (например, «леопарды») и, в качестве контроля, 50 отдельных снимков. Затем им показывали список слов, одно из которых выделялось, — в течение 15 секунд участники должны были вызывать соответствующие ему зрительные образы.
После этого ученые создали компьютерный алгоритм из 13 слоев, каждый из которых был редуцирован и описывал только около одной тысячи признаков. Нейросеть включала в себя восемь сверточных слоев (CNN), три модели HMAX, одну GIST, а также слой SIFT+BoF, широко используемый в машинном зрении. Сперва система тренировалась в признаковом описании более 100 тысяч изображений из 15 322 категорий. Причем со стимулами, которые задействовались в эксперименте с людьми, знакомили только слои HMAX и SIFT+BoF (одна тысяча фотографий из 150 категорий). Отдельно нейросеть составляла описание признаков на основании томограмм. Таким образом алгоритм освоил анализ разных визуальных данных.
Наконец, авторы проверили, способна ли нейросеть предсказать психическое содержание на основании томограмм при условии, что большинству ее «нейронам» изначально неизвестны вызвавшие его стимулы. Результаты показали, что система во многом гомологична живому мозгу. Так, ее слои хорошо прогнозировали активность различных участков зрительной коры (в работе оценивали 12 областей, свазанных с распознаванием, включая парагиппокампальную область мест (PPA) и другие). Кроме того, механизм предсказания соответствовал принципу функциональной иерархии: особенно хорошо прогнозы высоких и низких уровней системы совпадали с реакцией высших и глубоких слоев мозга.
По мнению ученых, полученные данные могут использоваться в моделировании живых нейронных сетей и автоматизации диагностики. Также расширение функциональности таких алгоритмов позволяет рассматривать их как потенциальную основу искусственного интеллекта.
Подробности работы представлены в журнале Nature Communications.
Ранее исследователи адаптировали метод МРТ к визуализации экспрессии генов.
Для разрыва связи между атомами водорода понадобились золото, титан и ультрафиолетовое излучение. Полученный водород ученые использовали для преобразования углекислого газа в этилен.
Ученые впервые смогли создать видимый в оптическом диапазоне темпоральный кристалл. Для этого они использовали жидкие кристаллы.
Расчеты ученого показали, что негативные последствия из-за увеличения потребления каннабиса и роста психических расстройств многократно перекроют возможные плюсы от снижения загрязнителей в конопле.
Глубоководная жизнь нам, сухопутным, кажется инопланетной. В недавней экспедиции морские биологи погрузились на дно пятого по глубине Курило-Камчатского желоба. Они преодолели 9500 метров толщи воды и встретили удивительно богатые сообщества организмов, живущих благодаря хемосинтезу. Тысячи километров дна покрывает беспозвоночная жизнь, которая питается благодаря бактериям, окисляющим метан. Naked Science поговорил с одним из авторов исследования.
Для разрыва связи между атомами водорода понадобились золото, титан и ультрафиолетовое излучение. Полученный водород ученые использовали для преобразования углекислого газа в этилен.
В данных космического телескопа «Джеймса Уэбба» ученые обнаружили объект, который может оказаться галактикой, сформировавшейся всего через 90 миллионов лет после Большого взрыва. Если открытие подтвердится, она станет абсолютным рекордсменом, побив рекорд предыдущего чемпиона почти на 200 миллионов лет. Однако исследователи осторожны — загадочный сигнал может иметь и другое, не менее интересное объяснение.
Недавнее появление в Солнечной системе межзвездного объекта 3I/ATLAS вызвало новую волну обсуждения вопроса о том, как отличить комету или астероид от внеземного космического корабля либо другого артефакта, не созданного человечеством. Астрономы рассказали, что у искусственного объекта могут быть четыре характерные особенности.
Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.
Глубоководная жизнь нам, сухопутным, кажется инопланетной. В недавней экспедиции морские биологи погрузились на дно пятого по глубине Курило-Камчатского желоба. Они преодолели 9500 метров толщи воды и встретили удивительно богатые сообщества организмов, живущих благодаря хемосинтезу. Тысячи километров дна покрывает беспозвоночная жизнь, которая питается благодаря бактериям, окисляющим метан. Naked Science поговорил с одним из авторов исследования.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии