Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Сколтехе разработали метод для изучения сложных твердых веществ с помощью машинного обучения
Ученые из Сколтеха представили метод для изучения свойств поликристаллов, композитных материалов и многофазных систем с помощью машинного обучения. Точность результатов расчетов с применением нового метода сопоставима с точностью квантово-механических методов, которые можно использовать только для материалов, состоящих не более чем из нескольких сотен атомов. Еще одно преимущество нового метода — в возможности обучения потенциала на так называемых локальных окружениях атомов.

Работа опубликована в журнале Advanced Theory and Simulations. «Многие синтезируемые материалы в промышленности получаются не моно-, а поликристаллическими, а иногда и многофазными. Они заключают в себе и монокристаллы, и аморфные части между монокристаллическими кристаллитами. С помощью современных квантово-химических методов свойства этих систем рассчитывать невозможно, так как они состоят из огромного числа атомов.
Теория функционала плотности ограничивается материалами с несколькими сотнями атомов. Для решения проблемы мы используем машинно-обучаемые межатомные потенциалы на базе потенциалов MTP (Moment Tensor Potentials). Они разрабатываются в Сколтехе под руководством профессора Александра Шапеева», — рассказал первый автор работы, аспирант программы «Науки о материалах» в Сколтехе Фаридун Джалолов.
Преимущество метода по сравнению с другими разрабатываемыми решениями в мире ученые видят в возможности активно обучать потенциал на так называемых локальных окружениях. В процессе расчета большой структуры из многих сотен тысяч атомов MTP-потенциал распознает, какой именно атом вносит ошибку в расчет или рассчитывается неверно. Такое может происходить из-за того, что обучающий набор данных конечный и все из возможных конфигураций учесть нельзя.
Локальное окружение этого атома «вырезается», и его энергия рассчитывается с помощью квантовой химии, после чего эти данные снова добавляются в обучающий набор и потенциал дообучивается. После такого обучения на лету расчет свойств продолжается, пока не встретится новая конфигурация, которую надо будет добавить в обучение. Другие известные машинно-обучаемые потенциалы не могут проводить обучение на маленьких локальных частях большой структуры, что ограничивает их применимость и сказывается на точности.
«Для примера мы изучили механические свойства поликристаллов алмаза. Они очень твердые и часто используются в промышленности — например, при производстве оборудования для бурения нефтяных скважин. Как видно из результатов, механические свойства поликристаллического алмаза зависят от размера зерен: чем больше зерно, тем он ближе по свойствам к монокристаллическому алмазу», — продолжил Фаридун Джалолов.
Ученые отметили, что разработанный подход позволит изучать механические свойства материалов, которые обычно синтезируются и используются в экспериментах, то есть не монокристаллические материалы, а также проводить всесторонние исследования механических свойств поликристаллов и композитных материалов с получением данных, близких к экспериментальным.
«Зачастую в реальных приложениях используются материалы, которые не являются идеальными кристаллами, потому что свойства идеальных кристаллов могут не соответствовать требованиям, предъявляемым к тому или иному оборудованию, составной частью которого материал является. Хорошим примером является победит — карбид вольфрама в связке с кобальтом. Добавление кобальта к твердому карбиду вольфрама делает материал более трещиностойким, что и делает его таким ценными для приложений. Данный подход позволит изучать причины и способы изменения механических свойств таких и многофазных систем на атомарном уровне», — рассказал руководитель исследования, профессор Центра по энергетическому переходу в Сколтехе Александр Квашнин.
За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».
Биотехнологи из Ноттингемского университета (Великобритания) воспроизвели процесс естественной ферментации какао-бобов в лаборатории, чтобы проверить, можно ли улучшить вкус готового продукта «вручную». Оказалось, что правильно подобранная колония микроорганизмов может внести свои нотки и определить качество будущего шоколада.
В системе Альфа Центавра, расположенной всего в 4,5 световых годах от Земли, обнаружена новая экзопланета. Хотя ее поверхность кажется необитаемой, астрономы не исключают, что на ее возможных спутниках могут идти биологические процессы. Ученый Пермского Политеха рассказал, почему это открытие может перевернуть наше представление о механизмах формирования планет.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».
Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии