Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИУ ВШЭ научились измерять время принятия решения
Ученые НИУ ВШЭ разработали алгоритм расчета индивидуальной длительности принятия решения. Алгоритм можно использовать для оценки нарушений процесса принятия решения и двигательных функций у пациентов с различными заболеваниями.
Результаты исследования опубликованы в PLOS One. Работа выполнена при поддержке мегагранта правительства России в рамках нацпроекта «Наука и университеты». Скорость и точность реакции человека в постоянно меняющейся среде имеют решающее значение для его адаптации. Чем более предсказуемо само событие для человека, тем быстрее и точнее его реакция. Предсказуемым событие может сделать подсказка о его скором появлении. Например, желтый сигнал светофора является подсказкой о том, что скоро можно переходить дорогу. Но перейти ее можно только на зеленый — стимул к запуску действия.
В реакции — периоде между стимулом к запуску действия и самим действием — ученые выделяют три фазы: анализ стимула, принятие решения о характере ответа и выполнение действия. Принятие решения не зависит от других фаз, то есть может произойти до сигнала к запуску действия, как в примере с желтым сигналом светофора. В таком случае эта фаза называется подготовительным периодом.
На примере со светофором можно увидеть: наличие подсказки о скором появлении стимула снижает время реакции на этот стимул — за счет переноса фазы принятия решения до самого стимула. Это подтверждают и научные эксперименты. Ученым давно известен так называемый эффект подготовительного периода: чем больше времени затрачивается на подготовку, тем быстрее мы реагируем на сам стимул.
В экспериментах задачи с подсказкой позволяют оценить время принятия решения (подготовительный период) и время моторной реакции отдельно друг от друга. Однако до сих пор исследователи не научились точно измерять подготовительный период в таких задачах — он задается экспериментатором вручную. Ученые ВШЭ решили разработать эффективный алгоритм, позволяющий определить индивидуальную длительность этого процесса.
Для этого они использовали классическую задачу с подсказкой. В каждой пробе участнику предъявлялась подсказка определенной формы. В зависимости от формы нужно было нажать стрелку — вправо или влево. Нажимать требовалось не сразу, а лишь после того, как исчезнет подсказка и появится сигнал к нажатию — зеленый круг. Время между исчезновением подсказки и появлением сигнала к нажатию и является подготовительным периодом в процессе принятия решения о нажатии.
Каждый участник выполнял 120 проб. Пробы делились поровну на три условия в зависимости от длительности подготовительного периода: в 40 пробах зеленый круг появлялся сразу после подсказки, еще в трети — через 1,2 секунды. В оставшихся пробах время между исчезновением подсказки и сигналом к нажатию было адаптивным. Адаптивный алгоритм подстраивался под индивидуальное время подготовительного периода конкретного испытуемого, которое рассчитывалось на основании его предыдущих проб.
Всего в эксперименте участвовало 67 человек. Их разделили на две группы в зависимости от сложности задачи. В простой задаче подсказки о том, какую кнопку нажать, различались только по форме: квадрат или крестик. В сложной задаче необходимо было учитывать как форму, так и угол поворота стимула. Ожидаемо, что в группах со сложной задачей времени на принятие решения требуется больше. Затем ученые проанализировали время реакции испытуемых в зависимости от группы и условий пробы.
Если подготовительный период отсутствовал (стимул к нажатию появлялся сразу после подсказки), время между этим стимулом и реакцией было больше в группе со сложной задачей по сравнению с простой. Это говорило о том, что в сложной задаче времени на принятие решения нужно больше, но не позволяло оценить его отдельно от времени моторной реакции.
Если подготовительный период составлял 1,2 секунды, время реакции было одинаковым независимо от сложности задачи. Это свидетельствовало о полном переносе процесса принятия решения в подготовительный период. Однако это все еще не давало представления об индивидуальном времени принятия решения.
«Анализ проб с адаптивным алгоритмом показал, что подготовительный период длился дольше в группе со сложной задачей. При этом время реакции было одинаковым в обеих группах. Таким образом, только использование адаптивного алгоритма позволяло оценить реальное время принятия решения, которое в данном случае зависело от сложности задачи», — объясняет руководитель исследования и автор методики, ведущий научный сотрудник Центра биоэлектрических интерфейсов НИУ ВШЭ Алексей Тумялис.
В отличие от других подходов к оценке времени принятия решения, адаптивный алгоритм дает оценку прямо во время выполнения задачи, а не после нее. Более того, он позволяет манипулировать процессом выполнения задания. Это может быть полезным как для исследования параметров принятия решения, так и для использования алгоритма в практических целях. Алгоритм можно использовать для оценки нарушений процесса принятия решения и двигательных функций у пациентов с различными заболеваниями.
Некоторые заболевания (тревожность или шизофрения) затрагивают только процесс принятия решения, другие (болезнь Паркинсона) — только моторные функции, тогда как третьи (инсульт) приводят к нарушению как моторных, так и когнитивных функций. Предложенный алгоритм позволяет оценить эти функции изолированно, поскольку отдельно измеряет время моторной реакции и время принятия решения индивидуально для каждого пациента. В настоящее время готовится исследование по трансляции разработанной методики в клиническую экспериментальную практику на базе Лаборатории медицинских нейроинтерфейсов и искусственного интеллекта Центра мозга и нейротехнологий ФМБА России, созданной совместно с РНИМУ имени Н. И. Пирогова в рамках Программы Приоритет-2030.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Периодически нейросети в своих ответах галлюцинируют, предлагая пользующимися их услугами людям выпить яд под видом лекарства и так далее. Новая научная работа показала, что эта проблема связана с самой природой нейросети. Хотя ее вероятность можно понизить, устранить полностью невозможно.
На юго-востоке Чехии археологи обнаружили не просто отдельные артефакты, а целый набор инструментов, который 30 тысяч лет назад носил с собой охотник-собиратель. Открытие дает представление о повседневной жизни этих людей, населявших территорию современной Центральной Европы.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии