Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские ученые предложили использовать комплексные соединения платины для создания новых лекарств
Специалисты ЮУрГУ синтезировали и исследовали новые, впервые полученные комплексные соединения платины для использования их в качестве лекарственных средств. Ученые выявили, что новые комплексные соединения платины обладают меньшей токсичностью и потенциалом защищать те ферменты в организме человека, которые при лечении онкологических заболеваний атакуются химиотерапевтическими препаратами.
Комплексы платины обладают уникальными свойствами, благодаря которым они применяются во многих сферах. В своей совместной работе научный сотрудник НИИ «Перспективные материалы и технологии ресурсосбережения» Алена Зыкова и соавтор исследования, профессор Юрица Новак выявили, что синтезированные новые комплексные соединения платины (IV) и (II) c органиламмониевыми и органилтрифенилфосфониевыми катионами сохраняют свой лекарственный потенциал и вместе с тем – обладают меньшей токсичностью, нежели уже существующие соединения. Новые соединения способны блокировать те ферменты, на которые при лечении онкологических заболеваний воздействуют химиотерапевтические препараты, также они могут стать важными агентами в лечении вирусных инфекций, таких как ВИЧ и атипичная пневмония.
«Из исследований известно, что цитотоксичность молекулярных соединений платины в значительной степени определяется лигандным окружением, и при правильной настройке целевых комплексов могут быть получены соединения, не обладающие существенной токсичностью. В связи с этим интерес был направлен на синтез ионных комплексов платины с различными органическими заместителями», – поясняет один из авторов исследования, кандидат химических наук, Алена Зыкова.
Вычислительная часть исследования была проведена в НИЛ Компьютерного моделирования лекарственных средств им. В. А. Потемкина в ЮУрГУ. В исследовании были использованы модели машинного обучения, разработанные под руководством Владимира Александровича Потемкина, который многие годы занимался дизайном новых лекарств с помощью компьютерного моделирования. Этот же способ (в сочетании с применением глубоких нейронных сетей) был использован здесь для получения новых платиновых соединений – для возможности предварительной оценки их биоактивности против различных заболеваний.
«Процесс синтезирования лекарств все еще долгий и дорогой. Однако методы компьютерного моделирования лекарств в сочетании с колоссальным ростом вычислительной мощности в последние годы могут дать большое количество преимуществ в современной разработке лекарств. Мы использовали новейший алгоритм машинного обучения и глубокие нейронные сети, чтобы идентифицировать потенциальное фармакологическое применение впервые полученных платиновых комплексных соединений. Наше исследование открывает возможности для развития селективных препаратов с минимальными, а в идеале – отсутствующими побочными эффектами. А также этот подход может значительно ускорить разработку препаратов и снизить ее стоимость», – рассказал Юрица Новак, доктор химических наук.
Результаты исследования опубликованы в журнале Bioimpacts (Q2). В настоящее время готовится вторая публикация, совместно с учеными из Индии, в которой будут объединены синтез комплексов платины, расчетная часть с прогнозом биологической активности и экспериментальные исследования in vitro и in vivo. Исследование было поддержано Правительством Российской Федерации (постановление № 211, соглашение № 02.A03.21.0011) и Министерством науки и высшего образования РФ (FENU‐2020‐0019).
Южно-Уральский государственный университет – это университет трансформаций, где ведутся инновационные исследования по большинству приоритетных направлений развития науки и техники. В соответствии со стратегией научно-технологического развития РФ университет сфокусирован на развитии крупных научных междисциплинарных проектов в области цифровой индустрии, материаловедения и экологии. В 2021 году ЮУрГУ победил в конкурсе по программе «Приоритет 2030». Вуз выполняет функции регионального проектного офиса Уральского межрегионального научно-образовательного центра мирового уровня (УМНОЦ), который призван решить задачи национального проекта «Наука и университеты».
Валерия Литвиненко
Если микропластиком называют частицы пластика размером примерно от 5 миллиметров до 1 микрона (0,001 миллиметра), то нанопластик — еще более мелкие частицы. Ученые из Южной Кореи обнаружили, что накопление нанопластика в организме способно не только вызвать серьезные болезни, но и заметно изменить социальное поведение.
Первый старт тяжелой ракеты New Glenn американской частной компании Blue Origin должен был состояться еще 10 января, однако его несколько раз перенесли из-за погодных условий. Главная цель запуска — вывод второй ступени на орбиту, а также, если удастся, посадка первой ступени на платформу в Атлантике.
Ученые из России, в числе которых два выпускника НИУ ВШЭ, опровергли известную в математике гипотезу, которая, хотя и не имела убедительного доказательства, считалась верной на протяжении 40 лет.
Если микропластиком называют частицы пластика размером примерно от 5 миллиметров до 1 микрона (0,001 миллиметра), то нанопластик — еще более мелкие частицы. Ученые из Южной Кореи обнаружили, что накопление нанопластика в организме способно не только вызвать серьезные болезни, но и заметно изменить социальное поведение.
Первый старт тяжелой ракеты New Glenn американской частной компании Blue Origin должен был состояться еще 10 января, однако его несколько раз перенесли из-за погодных условий. Главная цель запуска — вывод второй ступени на орбиту, а также, если удастся, посадка первой ступени на платформу в Атлантике.
Ученые из России, в числе которых два выпускника НИУ ВШЭ, опровергли известную в математике гипотезу, которая, хотя и не имела убедительного доказательства, считалась верной на протяжении 40 лет.
Ученые из Троицкого института инновационных и термоядерных исследований, МФТИ и МЭИ совершили значительный прорыв в области защиты материалов от экстремальных тепловых нагрузок, характерных для условий управляемого термоядерного синтеза.
Согласно популярному утверждению, человеческая мысль — едва ли не самое быстрое, что существует в природе. Даже свет многие считают менее быстрым, поскольку он распространяется со скоростью 300 тысяч километров в секунду, а мысль — «мгновенно». Однако новое исследование опровергло бытовую логику. Ученые из Калтеха измерили скорость, с которой человек обрабатывает информацию, и обнаружили, что основные когнитивные процессы во много раз медленнее не только распространения света, но и низкоскоростного интернета.
Группа климатологов проанализировала массив спутниковых снимков озер и водохранилищ по всей планете, сделанных с 1984 по 2021 год. Ученые обратили внимание на цвет поверхности водоемов и выяснили, что у большинства он изменился — преимущественно в сторону коротковолнового диапазона. Иными словами, экология десятков тысяч озер оказалась нестабильной.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии