Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские и немецкие ученые разработали цифровую модель для «умного» энергопотребления
В области электроэнергетики сегодня актуален вопрос рационального потребления ресурсов. Предприятия зачастую могут генерировать больше энергии, чем используют. Ученые Пермского Политеха и Высшей инженерной школы имени Георга Агриколы (Германия) разработали цифровую модель, которая позволит спрогнозировать расход электричества. Искусственный интеллект поможет компаниям не только сэкономить средства, но и получить прибыль.
Исследователи реализовали разработку на средства, которые получили в рамках уникального проекта международных исследовательских групп (МИГов), который действует в Пермском крае с 2011 года и не имеет аналогов в России, и гранта программы «Старт». Результаты работы ученые опубликовали в сборнике конференции 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM).
«Большинство электростанций в промышленных районах производят энергию непрерывно. Но потребление ее в течение суток происходит неравномерно. Поэтому электроэнергия в часы низкого спроса остается невостребованной, а во время пикового спроса ее не хватает.
Чтобы сбалансировать потребление и сделать его более «гибким», необходима автоматическая система, которая спрогнозирует эти процессы», – рассказывает профессор кафедры «Горная электромеханика» Пермского Политеха, доктор технических наук, доцент Александр Николаев.
По словам ученых, сейчас взаимодействие потребителей энергии и агрегаторов управления спросом регулируется Постановлением Правительства РФ. Если предприятие снижает нагрузку в установленные часы, то оно может получить вознаграждение. Но, чтобы эффективно прогнозировать процессы в системе энергоснабжения, нужно обрабатывать и анализировать множество информации в реальном времени. В этом помогут специальные алгоритмы на основе «цифровых двойников» предприятий, считают разработчики.
Ученые разработали цифровую модель, которая прогнозирует процессы энергопотребления на подземных горнодобывающих предприятиях. Для этого они использовали методы машинного обучения. Искусственный интеллект оценивает возможности и предлагает сценарии того, как можно снизить расход энергии.
«Горнодобывающая промышленность – одно из самых ресурсоемких производств. Например, одна шахта потребляет сотни ГВт∙ч электроэнергии в год. Но преимущество нашей разработки в том, что ее легко можно адаптировать и к другим отраслям», – поясняет исследователь.
Специалисты уже получили положительные результаты работы цифровой платформы. По словам разработчиков, инновационная технология поможет найти наиболее эффективный способ оптимизации процессов и позволит избежать аварийных ситуаций. Кроме того, новый алгоритм выполнен в соответствии с российской нормативной базой.
Зачем нужно изучать ядра планет? Как зарождалась эта наука и почему она важна? Что такое гамма-всплески и зачем нам знать, откуда они идут? Остается ли Россия великой космической державой и зачем вообще это всё надо? Об этом рассказывает Игорь Георгиевич Митрофанов, руководитель отдела ядерной планетологии Института космических исследований РАН, доктор физико-математических наук, академик Международной академии астронавтики.
Люди не заканчивают играть в детстве: во взрослом возрасте игры позволяют им не только весело провести свободное время или чему-то научиться, но и лучше узнать друг друга или заключить сделку. Подобное социальное игровое поведение считалось редкостью у взрослых особей других видов, однако международная команда ученых обнаружила регулярные игры на протяжении всей жизни у шимпанзе.
Планеты формируются из газа и пыли диска, окружающего молодую звезду. Пока диск не рассеется, разглядеть планеты почти невозможно. Впрочем, порой диск искривляется и смещается. В случае звезды IRAS 04125+2902 ученым повезло: диск обнажил очень молодую экзопланету.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.
Работать под началом шефа-абьюзера тяжело, но свежее исследование показало, что бывают варианты похуже. Ученые выяснили, что еще негативнее на моральный дух и производительность труда сотрудников влияет, когда во главе команды стоит самодур, у которого вспышки агрессии непредсказуемо сменяются этичным поведением.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии