Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские и немецкие ученые разработали цифровую модель для «умного» энергопотребления
В области электроэнергетики сегодня актуален вопрос рационального потребления ресурсов. Предприятия зачастую могут генерировать больше энергии, чем используют. Ученые Пермского Политеха и Высшей инженерной школы имени Георга Агриколы (Германия) разработали цифровую модель, которая позволит спрогнозировать расход электричества. Искусственный интеллект поможет компаниям не только сэкономить средства, но и получить прибыль.
Исследователи реализовали разработку на средства, которые получили в рамках уникального проекта международных исследовательских групп (МИГов), который действует в Пермском крае с 2011 года и не имеет аналогов в России, и гранта программы «Старт». Результаты работы ученые опубликовали в сборнике конференции 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM).
«Большинство электростанций в промышленных районах производят энергию непрерывно. Но потребление ее в течение суток происходит неравномерно. Поэтому электроэнергия в часы низкого спроса остается невостребованной, а во время пикового спроса ее не хватает.

Чтобы сбалансировать потребление и сделать его более «гибким», необходима автоматическая система, которая спрогнозирует эти процессы», – рассказывает профессор кафедры «Горная электромеханика» Пермского Политеха, доктор технических наук, доцент Александр Николаев.
По словам ученых, сейчас взаимодействие потребителей энергии и агрегаторов управления спросом регулируется Постановлением Правительства РФ. Если предприятие снижает нагрузку в установленные часы, то оно может получить вознаграждение. Но, чтобы эффективно прогнозировать процессы в системе энергоснабжения, нужно обрабатывать и анализировать множество информации в реальном времени. В этом помогут специальные алгоритмы на основе «цифровых двойников» предприятий, считают разработчики.
Ученые разработали цифровую модель, которая прогнозирует процессы энергопотребления на подземных горнодобывающих предприятиях. Для этого они использовали методы машинного обучения. Искусственный интеллект оценивает возможности и предлагает сценарии того, как можно снизить расход энергии.
«Горнодобывающая промышленность – одно из самых ресурсоемких производств. Например, одна шахта потребляет сотни ГВт∙ч электроэнергии в год. Но преимущество нашей разработки в том, что ее легко можно адаптировать и к другим отраслям», – поясняет исследователь.
Специалисты уже получили положительные результаты работы цифровой платформы. По словам разработчиков, инновационная технология поможет найти наиболее эффективный способ оптимизации процессов и позволит избежать аварийных ситуаций. Кроме того, новый алгоритм выполнен в соответствии с российской нормативной базой.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Жизнь в городских условиях давно стала для птиц своеобразной «эволюционной лабораторией». Ученые из Шотландии показали, что сильнее всего размножение птиц ухудшает наличие незнакомых деревьев.
Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно