• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
19.08.2020
Сколтех
2 320

Разработана система для создания более «умных» интерфейсов мозг-компьютер

❋ 5.3

Специалисты из Сколтеха, INRIA и RIKEN Advanced Intelligence Project исследовали возможности нескольких современных алгоритмов машинного обучения по решению определения умственной нагрузки и аффективных состояний человека. Разработанное программное обеспечение может быть использовано при создании более «умных» интерфейсов мозг-компьютер (ИМК), которые могут найти применение в медицине и других областях.

Разработана система для создания более «умных» интерфейсов мозг-компьютер / ©s.yimg.com / Автор: Euclio Drusus

Результаты исследования опубликованы в журнале IEEE Systems, Man, and Cybernetics. ИМК обеспечивает связь между мозгом человека и компьютером, позволяя человеку управлять различными устройствами, такими как рука робота или инвалидное кресло, по сигналу, поступающему от головного мозга (активный ИМК).

ИМК также позволяет отслеживать и классифицировать психоэмоциональные состояния человека (пассивный ИМК). Сигналы мозга, поступающие в ИМК, как правило, измеряют при помощи электроэнцефалографии (ЭЭГ) – распространенного неинвазивного метода измерения электрической активности головного мозга.

Получаемые в результате ЭЭГ «сырые» данные в виде непрерывных сигналов должны подвергнуться достаточно основательной обработке, прежде чем они смогут обеспечить точное определение умственной нагрузки и аффективных состояний человека, что является необходимым условием для корректной работы пассивного ИМК.

Имеющиеся на сегодняшний день экспериментальные данные свидетельствуют о том, что точность этих измерений недостаточна даже для решения таких простых задач, как определение различия между высокой и низкой умственной нагрузкой, не говоря уже об их использовании в практических приложениях.

«Такая низкая точность измерений обусловлена чрезвычайно сложным устройством человеческого мозга. Представьте себе, что наш мозг – это огромный оркестр, в котором участвуют тысячи инструментов, а нам нужно при помощи ограниченного числа микрофонов и датчиков выделить характерное звучание каждого отдельного инструмента», − отметил один из авторов статьи, профессор Центра Сколтеха по научным и инженерным вычислительным технологиям для задач с большими массивами данных (CDISE) Анджей Чихоцкий.

Из этого следует, что для решения задач классификации данных ЭЭГ и распознавания различных паттернов головного мозга требуются более надежные и точные алгоритмы. Профессор Чихоцкий и его коллеги рассмотрели две группы алгоритмов машинного обучения, классификаторов на основе римановой геометрии (RGC) и сверточных нейронных сетей (CNN), которые неплохо зарекомендовали себя в активных ИМК.

Исследователи решили выяснить, справятся ли эти алгоритмы не только с так называемыми воображаемыми двигательными задачами, в которых испытуемый представляет в своем воображении определенные движения конечностей, в реальности не совершая их, но и с задачами оценки умственной нагрузки и аффективных состояний.

Ученые провели своего рода «конкурс» для семи алгоритмов, два из которых ученые разработали самостоятельно путем оптимизации хорошо зарекомендовавших себя римановых алгоритмов. В одном из двух экспериментов использовалась типичная для ИМК схема, в которой алгоритмы сначала обучались на данных об определенном испытуемом, а затем на нем же и тестировались.

Второй эксперимент проводился без привязки к определенному испытуемому, а эта схема гораздо сложнее, так как у разных людей активность мозга может быть очень разной. В экспериментах использовались реальные данные ЭЭГ из более ранних экспериментов одного из авторов статьи Фабьена Лотте и его коллег, а также база данных DEAP, где собраны данные по анализу эмоциональных состояний человека.

Ученые обнаружили, что глубокая нейронная сеть обошла всех своих «конкурентов» в решении задачи оценки умственной нагрузки, но при этом плохо справилась с задачей классификации эмоциональных состояний, а вот два алгоритма с римановой оптимизацией неплохо проявили себя в решении обеих задач.

В статье авторы делают вывод о том, что использовать пассивный ИМК для классификации аффективных состояний гораздо сложнее, чем для оценки умственной нагрузки, а калибровка алгоритма без привязки к определенному испытуемому пока дает существенно более низкую точность.

«На следующих этапах исследования мы планируем использовать более сложные методы на основе искусственного интеллекта (ИИ) и, в первую очередь, методы глубокого обучения, с помощью которых можно выявлять самые незначительные изменения в сигналах и паттернах мозга.

Глубокие нейронные сети можно обучать на больших наборах данных, содержащих информацию о большом количестве испытуемых, различных тестовых сценариях и условиях испытаний. Искусственный интеллект, создание которого стало настоящей революцией, может оказаться весьма полезным для ИМК и решения задач распознавания человеческих эмоций», − сказал Чихоцкий. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
1 июля, 10:44
Александр Березин

На конференции в Снагове (Румыния) исследователи заявили о частичной расшифровке надписи на могиле итальянском Неаполе. Согласно их анализу, в ней захоронен Влад Дракула, известный правитель Валахии. Вопрос о том, как его останки могли попасть в южную Италию, которую тогда контролировала арагонская династия, остается открытым.

Вчера, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

1 июля, 16:46
Юлия Тарасова

Австрийские и немецкие ученые обнаружили неожиданную связь между длительностью отпуска по уходу за ребенком и курением матерей. Оказалось, риск обзавестись вредной привычкой возрастает с каждым лишним месяцем, проведенным женщиной в декрете.

28 июня, 18:58
Игорь Байдов

За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».

27 июня, 09:47
Авдей Палиш

Снимки с фотоловушек давно стали культурным явлением. Особенно забавными выглядят медведи. Мы с удовольствием смотрим на зверей, попавших в объектив камер в национальных парках: тигр украл фотоловушку, муравьед проехал верхом на муравьеде и так далее. Но не все животные настолько обаятельные. Ученые из США решили развить эмпатию к гремучим змеям, которых многие боятся. Для этого специалисты запустили трансляцию из «мегалогова», где рептилии отдыхают и рожают потомство.

29 июня, 17:23
Людмила Соколова

Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.

17 июня, 16:49
Адель Романова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

25 июня, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

5 июня, 13:20
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно