• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
19.08.2020, 12:06
Сколтех
2 320

Разработана система для создания более «умных» интерфейсов мозг-компьютер

❋ 5.3

Специалисты из Сколтеха, INRIA и RIKEN Advanced Intelligence Project исследовали возможности нескольких современных алгоритмов машинного обучения по решению определения умственной нагрузки и аффективных состояний человека. Разработанное программное обеспечение может быть использовано при создании более «умных» интерфейсов мозг-компьютер (ИМК), которые могут найти применение в медицине и других областях.

Разработана система для создания более «умных» интерфейсов мозг-компьютер / ©s.yimg.com / Автор: Euclio Drusus

Результаты исследования опубликованы в журнале IEEE Systems, Man, and Cybernetics. ИМК обеспечивает связь между мозгом человека и компьютером, позволяя человеку управлять различными устройствами, такими как рука робота или инвалидное кресло, по сигналу, поступающему от головного мозга (активный ИМК).

ИМК также позволяет отслеживать и классифицировать психоэмоциональные состояния человека (пассивный ИМК). Сигналы мозга, поступающие в ИМК, как правило, измеряют при помощи электроэнцефалографии (ЭЭГ) – распространенного неинвазивного метода измерения электрической активности головного мозга.

Получаемые в результате ЭЭГ «сырые» данные в виде непрерывных сигналов должны подвергнуться достаточно основательной обработке, прежде чем они смогут обеспечить точное определение умственной нагрузки и аффективных состояний человека, что является необходимым условием для корректной работы пассивного ИМК.

Имеющиеся на сегодняшний день экспериментальные данные свидетельствуют о том, что точность этих измерений недостаточна даже для решения таких простых задач, как определение различия между высокой и низкой умственной нагрузкой, не говоря уже об их использовании в практических приложениях.

«Такая низкая точность измерений обусловлена чрезвычайно сложным устройством человеческого мозга. Представьте себе, что наш мозг – это огромный оркестр, в котором участвуют тысячи инструментов, а нам нужно при помощи ограниченного числа микрофонов и датчиков выделить характерное звучание каждого отдельного инструмента», − отметил один из авторов статьи, профессор Центра Сколтеха по научным и инженерным вычислительным технологиям для задач с большими массивами данных (CDISE) Анджей Чихоцкий.

Из этого следует, что для решения задач классификации данных ЭЭГ и распознавания различных паттернов головного мозга требуются более надежные и точные алгоритмы. Профессор Чихоцкий и его коллеги рассмотрели две группы алгоритмов машинного обучения, классификаторов на основе римановой геометрии (RGC) и сверточных нейронных сетей (CNN), которые неплохо зарекомендовали себя в активных ИМК.

Исследователи решили выяснить, справятся ли эти алгоритмы не только с так называемыми воображаемыми двигательными задачами, в которых испытуемый представляет в своем воображении определенные движения конечностей, в реальности не совершая их, но и с задачами оценки умственной нагрузки и аффективных состояний.

Ученые провели своего рода «конкурс» для семи алгоритмов, два из которых ученые разработали самостоятельно путем оптимизации хорошо зарекомендовавших себя римановых алгоритмов. В одном из двух экспериментов использовалась типичная для ИМК схема, в которой алгоритмы сначала обучались на данных об определенном испытуемом, а затем на нем же и тестировались.

Второй эксперимент проводился без привязки к определенному испытуемому, а эта схема гораздо сложнее, так как у разных людей активность мозга может быть очень разной. В экспериментах использовались реальные данные ЭЭГ из более ранних экспериментов одного из авторов статьи Фабьена Лотте и его коллег, а также база данных DEAP, где собраны данные по анализу эмоциональных состояний человека.

Ученые обнаружили, что глубокая нейронная сеть обошла всех своих «конкурентов» в решении задачи оценки умственной нагрузки, но при этом плохо справилась с задачей классификации эмоциональных состояний, а вот два алгоритма с римановой оптимизацией неплохо проявили себя в решении обеих задач.

В статье авторы делают вывод о том, что использовать пассивный ИМК для классификации аффективных состояний гораздо сложнее, чем для оценки умственной нагрузки, а калибровка алгоритма без привязки к определенному испытуемому пока дает существенно более низкую точность.

«На следующих этапах исследования мы планируем использовать более сложные методы на основе искусственного интеллекта (ИИ) и, в первую очередь, методы глубокого обучения, с помощью которых можно выявлять самые незначительные изменения в сигналах и паттернах мозга.

Глубокие нейронные сети можно обучать на больших наборах данных, содержащих информацию о большом количестве испытуемых, различных тестовых сценариях и условиях испытаний. Искусственный интеллект, создание которого стало настоящей революцией, может оказаться весьма полезным для ИМК и решения задач распознавания человеческих эмоций», − сказал Чихоцкий. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
16 июля, 10:28
Адель Романова

По мнению ученых, наблюдаемые в атмосфере спутника Сатурна Титана сложные органические молекулы могут соединяться в подобия внутриклеточных органелл — везикул. Более того, в дальнейшем эти структуры способны становиться еще более сложными и образовывать не что иное, как протоклетки.

15 июля, 12:45
ПНИПУ

В условиях отсутствия связи (шахты, горы, тайга) критически важна надежная передача данных. Ученые Пермского Политеха разработали цифровую радиостанцию, устойчивую к помехам и физическим препятствиям, включая бетонные стены. Устройство передает данные в двух сетях MANET одновременно, обеспечивая скорость до 300 кбит/с (низкоскоростной канал) и 54 Мбит/с (высокоскоростной). Рация работает как ретранслятор и узел сети, что делает ее незаменимой для спасателей, промышленности и туристов. Ключевые преимущества разработки: помехоустойчивость, дальность связи до 30 километров и работа при -25°C до +55 градусов Цельсия.

16 июля, 12:16
Александр Березин

Даже опытные программисты считали, что использование нейросети для написания кода экономит им время. Однако, когда исследователи проверили это на задачах из реального мира, выяснилось, что разработчики ошибаются. В действительности применение ИИ увеличило время, необходимое для реализации проектов.

12 июля, 22:10
Редакция Naked Science

Лето 2025 обещает насыщенную линейку научно-фантастических сериалов на ведущих стриминговых платформах. От адаптаций культовых романов до масштабных космических одиссей — мы отобрали проекты, на которые стоит обратить внимание.

11 июля, 17:47
Денис Яковлев

Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.

15 июля, 11:00
НИУ ВШЭ

В Институте искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ предложили новый подход, основанный на современных методах машинного обучения, для определения генетического происхождения человека. Графовые нейросети позволяют с высокой точностью различать даже очень близкие популяции.

17 июня, 16:49
Адель Романова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

25 июня, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

2 июля, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно