Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Модификация алгоритма улучшила отслеживание объектов на видео
Ученые МТУСИ предложили новый подход к улучшению реидентификации объектов — процесса отслеживания одного и того же объекта на протяжении всего видеоряда.
В современном мире технологии компьютерного зрения играют ключевую роль в различных сферах жизни, от регулирования дорожного движения до обеспечения безопасности на улицах. Одна из важнейших задач в этой области — реидентификация объектов. Однако несмотря на кажущуюся простоту, процесс реидентификации требует использования сложных алгоритмов, сталкивающихся с такими вызовами, как большое количество параметров, долгое время обучения и низкая скорость исполнения.
Ученые МТУСИ предложили новый подход к улучшению реидентификации объектов. В своей работе они использовали современные инструменты, такие как среда Google Colab, язык программирования Python, а также пакеты Super Gradients для работы с моделью YOLO-NAS и Filterpy для реализации алгоритмов отслеживания. В исследовании основной акцент сделан на возможности отслеживания сразу нескольких движущихся целей, присутствующих в кадре. Используются алгоритмы отслеживания нескольких объектов SORT, то есть алгоритм сортировки и DeepSORT — алгоритм глубокой сортировки.
«Одним из базовых алгоритмов для отслеживания объектов является SORT. Он работает быстро, но в сложных условиях, таких как перекрытие объектов или их движение в обратном направлении, может давать сбои. Более совершенный алгоритм — DeepSORT — использует нейронные сети для более точного отслеживания, даже в условиях помех. Алгоритм SORT состоит из четырех основных компонентов: обнаружение, оценка, сопоставление данных, а также создание и удаление идентификаторов треков. Однако в сложных ситуациях, например, при перекрытии объектов или изменении направления их движения, SORT демонстрирует снижение точности», — отметил Тимур Дмитриевич Потапченко, к.т.н., доцент кафедры «Программная инженерия» МТУСИ.
Исследователи МТУСИ провели эксперимент, используя видеозапись с проезжающими автомобилями. Камера была немного смещена от центра, а фонарный столб перекрывал часть обзора, создавая дополнительные сложности. В ходе исследования выяснилось, что алгоритм SORT действительно дает сбои в таких условиях. Улучшая алгоритм сортировки глубокой сортировкой, в исследовании демонстрируется общее улучшение поведения процесса реидентификации движущихся объектов
«После загрузки видео и получения первоначального набора обнаружений с помощью продвинутой модели YOLO-NAS каждому объекту был присвоен уникальный идентификатор. Затем объекты отслеживались по всем кадрам видеопотока с использованием алгоритма DeepSORT. В результате все автомобили были успешно идентифицированы и отслежены, даже те, которые частично перекрывались», — подчеркнул Юрий Садыев, магистрант МТУСИ.
Однако в ходе исследования была замечена ошибочная классификация типов транспорта. Например, легковой автомобиль мог быть ошибочно распознан как грузовик. Ученые предлагают решить эту проблему за счет увеличения объема данных для обучения и количества эпох.
В реальных условиях оборудование не всегда может обрабатывать видео со стандартной частотой 30 кадров в секунду. Ученые провели эксперимент, пропуская 1, 2 и 3 кадра, чтобы понять, как это влияет на работу алгоритмов.
Результаты показали, что общая производительность процесса реидентификации сильно зависит от производительности детектора объектов. Алгоритм SORT изначально работает быстрее, достигая 50 кадров в секунду, но DeepSORT в сочетании с облегченной моделью и пропуском кадров не только увеличивает скорость, но и позволяет отслеживать объекты в сложных условиях.
Исследование подтвердило, что улучшенный алгоритм глубокой сортировки является мощным инструментом для задач отслеживания и реидентификации объектов, особенно в условиях, где объекты временно скрываются, перекрываются или находятся в толпе. При этом даже с учетом пропуска кадров алгоритм сохраняет высокую точность, что делает его применимым в реальных сценариях с ограниченными аппаратными ресурсами.
Работа ученых МТУСИ имеет большое практическое значение. Улучшенные алгоритмы реидентификации могут быть использованы в системах видеонаблюдения, автономных транспортных средствах, робототехнике и других областях, где важно точно отслеживать объекты в реальном времени.
Акведуки, дороги, бани и города, которые римляне построили на оккупированных территориях, часто воспринимаются историками как символ прогресса. Но археологические раскопки, проведенные учеными из Великобритании, открыли обратную, мрачную сторону этого «развития». Оказалось, римское владычество на несколько поколений подорвало здоровье местного населения, особенно тех, кто жил в административных центрах. Исследователи увидели эту печальную картину в костях наиболее уязвимых групп населения — женщин и детей, которые первыми реагируют на ухудшение условий жизни.
В конце 2025 года Национальные академии наук, инженерии и медицины США представили доклад, посвященный будущим пилотируемым миссиям к Марсу. В документе подробно описаны причины, по которым людям стоит отправиться на Красную планету, а также технологии, способные приблизить человечество к первой высадке.
На Красной планете ученые нашли предполагаемую «каменную летопись» древних приливов. Эту запись могла оставить не существующая сегодня сила — гравитация луны, которая когда-то красовалась в марсианском небе и управляла «ритмом» морей.
Акведуки, дороги, бани и города, которые римляне построили на оккупированных территориях, часто воспринимаются историками как символ прогресса. Но археологические раскопки, проведенные учеными из Великобритании, открыли обратную, мрачную сторону этого «развития». Оказалось, римское владычество на несколько поколений подорвало здоровье местного населения, особенно тех, кто жил в административных центрах. Исследователи увидели эту печальную картину в костях наиболее уязвимых групп населения — женщин и детей, которые первыми реагируют на ухудшение условий жизни.
У побережья Канады морские биологи стали свидетелями необычного случая. Косатки и дельфины объединили свои силы, чтобы вместе охотиться на тихоокеанского лосося. Они погружались в темные глубины, а после удачной охоты делились пищей. Это первое задокументированное охотничье сотрудничество между двумя видами морских млекопитающих.
В конце 2025 года Национальные академии наук, инженерии и медицины США представили доклад, посвященный будущим пилотируемым миссиям к Марсу. В документе подробно описаны причины, по которым людям стоит отправиться на Красную планету, а также технологии, способные приблизить человечество к первой высадке.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
