• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
7 февраля
МТУСИ
295

Модификация алгоритма улучшила отслеживание объектов на видео

4.4

Ученые МТУСИ предложили новый подход к улучшению реидентификации объектов — процесса отслеживания одного и того же объекта на протяжении всего видеоряда.

Модификация алгоритма улучшила отслеживание объектов в видеоряде / © LionDoc, ru.wikipedia.org

В современном мире технологии компьютерного зрения играют ключевую роль в различных сферах жизни, от регулирования дорожного движения до обеспечения безопасности на улицах. Одна из важнейших задач в этой области — реидентификация объектов. Однако несмотря на кажущуюся простоту, процесс реидентификации требует использования сложных алгоритмов, сталкивающихся с такими вызовами, как большое количество параметров, долгое время обучения и низкая скорость исполнения.

Ученые МТУСИ предложили новый подход к улучшению реидентификации объектов. В своей работе они использовали современные инструменты, такие как среда Google Colab, язык программирования Python, а также пакеты Super Gradients для работы с моделью YOLO-NAS и Filterpy для реализации алгоритмов отслеживания. В исследовании основной акцент сделан на возможности отслеживания сразу нескольких движущихся целей, присутствующих в кадре. Используются алгоритмы отслеживания нескольких объектов SORT, то есть алгоритм сортировки и DeepSORT — алгоритм глубокой сортировки.

«Одним из базовых алгоритмов для отслеживания объектов является SORT. Он работает быстро, но в сложных условиях, таких как перекрытие объектов или их движение в обратном направлении, может давать сбои. Более совершенный алгоритм — DeepSORT — использует нейронные сети для более точного отслеживания, даже в условиях помех. Алгоритм SORT состоит из четырех основных компонентов: обнаружение, оценка, сопоставление данных, а также создание и удаление идентификаторов треков. Однако в сложных ситуациях, например, при перекрытии объектов или изменении направления их движения, SORT демонстрирует снижение точности», — отметил Тимур Дмитриевич Потапченко, к.т.н., доцент кафедры «Программная инженерия» МТУСИ.  

Исследователи МТУСИ провели эксперимент, используя видеозапись с проезжающими автомобилями. Камера была немного смещена от центра, а фонарный столб перекрывал часть обзора, создавая дополнительные сложности. В ходе исследования выяснилось, что алгоритм SORT действительно дает сбои в таких условиях.  Улучшая алгоритм сортировки глубокой сортировкой, в исследовании демонстрируется общее улучшение поведения процесса реидентификации движущихся объектов

«После загрузки видео и получения первоначального набора обнаружений с помощью продвинутой модели YOLO-NAS каждому объекту был присвоен уникальный идентификатор. Затем объекты отслеживались по всем кадрам видеопотока с использованием алгоритма DeepSORT.  В результате все автомобили были успешно идентифицированы и отслежены, даже те, которые частично перекрывались», — подчеркнул Юрий Садыев, магистрант МТУСИ.  

Однако в ходе исследования была замечена ошибочная классификация типов транспорта. Например, легковой автомобиль мог быть ошибочно распознан как грузовик. Ученые предлагают решить эту проблему за счет увеличения объема данных для обучения и количества эпох.  

В реальных условиях оборудование не всегда может обрабатывать видео со стандартной частотой 30 кадров в секунду. Ученые провели эксперимент, пропуская 1, 2 и 3 кадра, чтобы понять, как это влияет на работу алгоритмов.  

Результаты показали, что общая производительность процесса реидентификации сильно зависит от производительности детектора объектов. Алгоритм SORT изначально работает быстрее, достигая 50 кадров в секунду, но DeepSORT в сочетании с облегченной моделью и пропуском кадров не только увеличивает скорость, но и позволяет отслеживать объекты в сложных условиях.  

Исследование подтвердило, что улучшенный алгоритм глубокой сортировки является мощным инструментом для задач отслеживания и реидентификации объектов, особенно в условиях, где объекты временно скрываются, перекрываются или находятся в толпе. При этом даже с учетом пропуска кадров алгоритм сохраняет высокую точность, что делает его применимым в реальных сценариях с ограниченными аппаратными ресурсами.

Работа ученых МТУСИ имеет большое практическое значение. Улучшенные алгоритмы реидентификации могут быть использованы в системах видеонаблюдения, автономных транспортных средствах, робототехнике и других областях, где важно точно отслеживать объекты в реальном времени.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский технический университет связи и информатики (МТУСИ) — ведущее отраслевое техническое высшее учебное заведение Центральной России по подготовке кадров для IT и телеком-индустрии, подведомственное Министерству цифрового развития, связи и массовых коммуникаций РФ. Основан в 1921 году на базе Московского электротехнического института народной связи им. В.Н. Подбельского. Ежегодно МТУСИ выпускает востребованных специалистов в области связи, информационных технологий, квантовых коммуникаций, робототехники, информационной безопасности и цифровой экономики. В состав университета входят 5 факультетов, 34 кафедры, 2 филиала (Волго-Вятский и Северо-Кавказский), Колледж телекоммуникаций, Музей электросвязи, Квантовый центр, Центр робототехники, Лаборатория AR/VR, Центры заочного обучения бакалавров и магистров, Центр индивидуального обучения.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 12:01
Юлия Трепалина

Американские исследователи провели эксперимент, который показал, сколько микропластиковых частиц может потенциально проглатывать человек, пока жует натуральную или синтетическую жвачку. Ученые призвали задуматься, стоит ли подвергать организм дополнительному воздействию микропластика. Хотя однозначных свидетельств его вреда для людей на сегодня нет, результаты исследований по этому вопросу вызывают в научном сообществе все больше беспокойства.

Вчера, 14:08
Березин Александр

Международное энергетическое агентство подвело итоги 2024 года в новом отчете. Мощности возобновляемой энергетики выросли на четверть всего за год. Все виды безуглеродной генерации впервые достигли 40% от мирового потребления электричества. Более того, из-за продолжающейся электрификации дорожного транспорта потребление им нефти сократилось.

Вчера, 15:30
ФизТех

Российские ученые продемонстрировали новый тип мод — октупольные квазизахваченные моды на метаповерхности, состоящей из нанодисков дисульфида молибдена MoS2. Это открытие способствует созданию эффективных концентраторов и нелинейных преобразователей света на основе метаповерхностей Ван-дер-Ваальса.

23 марта
Михаил Орлов

Крупные современные города России — продукт своеобразной эволюции. Их морфология может сочетать историческую застройку, советское наследие и здания времен рыночной экономики. Авторы новой статьи — ученые из ВШЭ и Института географии РАН — заинтересовались, насколько российские города соответствуют современной концепции 15-минутного города. Она описывает доступность инфраструктуры для жителей: могут ли те самостоятельно добраться (пешком или на велосипеде) до школ, больниц, театров и других необходимых заведений за четверть часа.

22 марта
Михаил Орлов

Прежде чем на Земле появились привычные нам животные, ее населяли «черновики Бога». Это таинственные существа, жившие в эдиакарском периоде и совсем не похожие на своих преемников. В новом исследовании ученые описали 211 окаменелостей мелкой двусторонне-симметричной Parvancorina minchami, найденных у берегов Белого моря. Авторы сумели реконструировать рост и развитие парванкорины, а также оценили продолжительность ее жизни.

21 марта
РТУ МИРЭА

В РТУ МИРЭА разработали образовательный проект — многопользовательскую игру API Wars, которая помогает развивать навыки программирования, frontend-разработки и социальной инженерии в увлекательной форме. Действие игры разворачивается в далеком будущем, где игроки, выступая в роли хакерских команд, пытаются взломать автоматизированный завод по производству роботов. Игра также вносит вклад в культурные тренды, используя элементы советского стиля.

15 марта
Юлия Трепалина

Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).

6 марта
Юлия Трепалина

В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.

18 марта
Илья

Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно