Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МТУСИ разработали алгоритм обнаружения девиантного поведения
Ученые МТУСИ создали алгоритм обнаружения девиантного поведения на основе видео в реальном времени с поддержкой нескольких камер и нескольких людей, основанный на оценке позы человека и открытой исходной форме алгоритма OpenPifPaf.
Проблема обеспечения безопасности жителей мегаполисов становится особенно актуальной в наши дни. Зачастую опасные ситуации возникают из-за девиантного поведения людей: драк, нападений, нахождения в неположенном месте. Современные города оснащены системами видеонаблюдения: их используют для контроля городской жизни, а можно направить их на обнаружение потенциально опасных ситуаций в режиме реального времени.
«В связи с огромным количеством видеоматериалов задача обнаружения опасных ситуаций требует использования современных интеллектуальных технологий, позволяющих проводить автоматический анализ. Первоочередная задача – научить программу определять положение тела человека на изображениях и видео», — рассказал декан факультета «Информационные технологии» МТУСИ, кандидат технических наук Михаил Городничев.
Существует несколько библиотек, позволяющих оценить позу человека по видеоизображению. После изучения различных вариантов учеными было принято решение об использовании OpenPifPaf для работы над проектом по созданию алгоритма.
«Данные являются основой любой системы, построенной с использованием машинного обучения. Основными критериями их качества являются точность разбиения и разнообразие. Наиболее популярные наборы данных для распознавания поз – MPII и COCO, они отличаются друг от друга разметкой и количеством изображений. При реализации алгоритма выделения девиантного поведения был использован набор COCO», — пояснила старший преподаватель кафедры «Математическая кибернетика и информационные технологии» МТУСИ Ксения Полянцева.
Помимо библиотеки OpenPifPaf в проекте использовались вспомогательные библиотеки Python: torch, argparse, math, OpenCV, matplotlib, PIL. Для практического применения алгоритма было создано приложение, распознающее падение человека по видео.
Над видеоизображением отображается основная информация: количество кадров в секунду, общее количество обработанных кадров, прогнозируемое состояние человека, которое может быть либо «Нормальное», либо «Предупреждение о падении», либо «Падение». В случае ошибки распознавания человека (в том числе, если в кадре нет людей), состояние отображается как «Нет».
Дополнительно было создано веб-приложение, которое реагирует на девиантное поведение, фиксирует его, записывает событие в базу данных и отображает уведомление. Каждая строка содержит информацию о признаке девиантного поведения (на данном этапе только падение человека), дату и время фиксации, номер камеры.
Сотрудники кафедры «Математическая кибернетика и информационные технологии» МТУСИ Марина Мосева и Артем Павликов подчеркнули, что предложенный алгоритм работает с достаточно низкими аппаратными требованиями, а программа не требует графического процессора. Тем не менее, алгоритм имеет склонность к ложным срабатываниям из-за несбалансированных обучающих данных, поэтому для получения наилучших результатов необходимо дальнейшее обучение системы.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Жизнь в городских условиях давно стала для птиц своеобразной «эволюционной лабораторией». Ученые из Шотландии показали, что сильнее всего размножение птиц ухудшает наличие незнакомых деревьев.
Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
