Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МТУСИ разработали алгоритм обнаружения девиантного поведения
Ученые МТУСИ создали алгоритм обнаружения девиантного поведения на основе видео в реальном времени с поддержкой нескольких камер и нескольких людей, основанный на оценке позы человека и открытой исходной форме алгоритма OpenPifPaf.
Проблема обеспечения безопасности жителей мегаполисов становится особенно актуальной в наши дни. Зачастую опасные ситуации возникают из-за девиантного поведения людей: драк, нападений, нахождения в неположенном месте. Современные города оснащены системами видеонаблюдения: их используют для контроля городской жизни, а можно направить их на обнаружение потенциально опасных ситуаций в режиме реального времени.
«В связи с огромным количеством видеоматериалов задача обнаружения опасных ситуаций требует использования современных интеллектуальных технологий, позволяющих проводить автоматический анализ. Первоочередная задача – научить программу определять положение тела человека на изображениях и видео», — рассказал декан факультета «Информационные технологии» МТУСИ, кандидат технических наук Михаил Городничев.
Существует несколько библиотек, позволяющих оценить позу человека по видеоизображению. После изучения различных вариантов учеными было принято решение об использовании OpenPifPaf для работы над проектом по созданию алгоритма.
«Данные являются основой любой системы, построенной с использованием машинного обучения. Основными критериями их качества являются точность разбиения и разнообразие. Наиболее популярные наборы данных для распознавания поз – MPII и COCO, они отличаются друг от друга разметкой и количеством изображений. При реализации алгоритма выделения девиантного поведения был использован набор COCO», — пояснила старший преподаватель кафедры «Математическая кибернетика и информационные технологии» МТУСИ Ксения Полянцева.
Помимо библиотеки OpenPifPaf в проекте использовались вспомогательные библиотеки Python: torch, argparse, math, OpenCV, matplotlib, PIL. Для практического применения алгоритма было создано приложение, распознающее падение человека по видео.
Над видеоизображением отображается основная информация: количество кадров в секунду, общее количество обработанных кадров, прогнозируемое состояние человека, которое может быть либо «Нормальное», либо «Предупреждение о падении», либо «Падение». В случае ошибки распознавания человека (в том числе, если в кадре нет людей), состояние отображается как «Нет».
Дополнительно было создано веб-приложение, которое реагирует на девиантное поведение, фиксирует его, записывает событие в базу данных и отображает уведомление. Каждая строка содержит информацию о признаке девиантного поведения (на данном этапе только падение человека), дату и время фиксации, номер камеры.
Сотрудники кафедры «Математическая кибернетика и информационные технологии» МТУСИ Марина Мосева и Артем Павликов подчеркнули, что предложенный алгоритм работает с достаточно низкими аппаратными требованиями, а программа не требует графического процессора. Тем не менее, алгоритм имеет склонность к ложным срабатываниям из-за несбалансированных обучающих данных, поэтому для получения наилучших результатов необходимо дальнейшее обучение системы.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
Группа биологов и медиков из Австралии, Сингапура и Китая обнаружила, что белок MCL-1 играет критическую роль в выживании стволовых клеток волосяных фолликулов. Без него клетки погибают, что приводит к остановке регенерации и роста волос.
Ученые из Сколтеха исследовали разнообразие молекул, которые могут образовываться из атомов кислорода и углерода. Помимо широко известных углекислого и угарного газов, моделирование обнаружило две сотни экзотических, но относительно стабильных соединений этих двух элементов, многие из которых не были описаны ранее. Этот класс веществ представляет интерес для исследований космоса, аккумуляторных технологий, биохимии и — неожиданным образом — для разработки промышленной взрывчатки и ракетного топлива. Как оказалось, некоторые из открытых веществ при распаде будут высвобождать более 75 процентов взрывной энергии тротила.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии