• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
20.12.2024, 14:52
ФизТех
292

Новые алгоритмы ускоряют машинное обучение в децентрализованных сетях

❋ 4.4

Международная команда ученых совершила прорыв в области распределенного машинного обучения, разработав новые алгоритмы, значительно повышающие эффективность обучения моделей в федеративных сетях. Исследование, проведенное группой, куда вошли специалисты МФТИ, представляет собой значительный шаг вперед в решении проблемы высокой вычислительной сложности обучения больших моделей в распределенных системах.

Сравнение новых четырех предложенных методов (Q-NASTYA, DIANA-NASTYA, Q-RR, DIANA-RR) и существующих (FedCOM, FedPAQ) с настроенными размерами шагов и компрессором Rand-k. / © NeurIPS 2024

Результаты опубликованы в материалах конференции NeurIPS 2024. Современное машинное обучение часто опирается на обучение моделей на огромных объемах данных, что требует распределенных вычислений. Федеративное обучение (Federated Learning, FL) — это подход, позволяющий обучать модели на децентрализованных данных, хранящихся на множестве устройств (смартфоны, медицинские приборы и так далее), без прямого обмена этими данными.

Ключевая проблема федеративного обучения заключается в высокой коммуникационной сложности. А именно передача данных и вычисление градиентов на основе них (векторов, характеризующих направление изменения параметров модели) становится проблемой, которая замедляет весь процесс обучения. Коммуникационная сложность заключается в огромном количестве передач данных по сети, необходимых для достижения заданной точности решения.

Обычно для решения этой проблемы используют стохастический градиентный спуск. Он основан на том, чтобы использовать неполную информацию для вычисления градиента, выбирая используемые данные для этого случайным образом. такие методы делятся на методы с возвращением и без возвращения. При выборе с возвращением один и тот же набор данных может быть выбран несколько раз, а при выборе без возвращения каждый набор данных выбирается только один раз.

В свежей статье, представленной на конференции NeurIPS 2024, авторы предлагают новые подходы. Они разработали четыре новых алгоритма, сочетающие сжатие градиентов с методом случайной перестановки и локальными вычислениями.


Сравнение алгоритмов Q-RR, QSGD, DIANA и DIANA-RR в задаче обучения глубокой нейронной сети / © NeurIPS 2024

Первый новый алгоритм они назвали Q-RR (Quantized Random Reshuffling). Это самый наивный подход, сочетающий сжатие градиентов и метод перестановки. К сожалению, теоретический анализ показал, что этот метод не демонстрирует преимуществ перед традиционными методами сжатия градиентов.

Второй предложенный учеными метод, названный ими DIANA-RR, является модификацией первого. Они улучшили предыдущий подход, добавив снижение дополнительной дисперсии, которая возникла из-за сжатия градиентов. В результате им удалось получить алгоритм, который имеет лучшую скорость сходимости, чем существующие аналоги, основанные на выборке с возвращением.

Для лучшей адаптации к задачам федеративного обучения ученые расширили алгоритмы Q-RR и DIANA-RR, добавив локальные вычислительные шаги. Так они получили ещё два новых метода, которые назвали Q-NASTYA и DIANA-NASTYA. Эти методы используют разные размеры шагов для локальных и глобальных обновлений. Однако при этом и DIANA-NASTYA, и DIANA-RR предназначены для уменьшения дополнительной дисперсии, вносимой сжатием градиентов.

Авторы исследования провели теоретический анализ и три численных эксперимента, которые подтвердили эффективность предложенных алгоритмов. Алгоритмы DIANA-RR и DIANA-NASTYA значительно превосходят по скорости сходимости существующие методы, особенно при высокой степени сжатия градиентов и в условиях, когда требуется высокая точность.

Для моделирования в первых двух экспериментах авторы использовали решение бинарной проблемы классификации (проверке принадлежности объектов к одному из двух классов) методом логистической регрессии с регуляризацией. В первых двух экспериментах они сравнивали между собой локальные и нелокальные методы.

Оказалось, что результаты, наблюдаемые в численных экспериментах, идеально соответствовали выведенной теории.

В третьем эксперименте авторы использовали нелокальные методы для распределенного машинного обучения глубокой нейронной сети, и в нем новые методы тоже показали свое преимущество над традиционными подходами.

«Многие существующие работы в области федеративного обучения рассматривают методы стохастического градиентного спуска с возвращением. Однако недавно удалось показать как теоретически, так и практически, что методы, основанные на выборке без возвращения, например, метод случайной перестановки, работают лучше», — рассказал Абдурахмон Садиев, научный сотрудник лаборатории численных методов прикладной структурной оптимизации ФПМИ МФТИ.

Разработанные алгоритмы представляют собой важный вклад в область федеративного обучения, позволяя существенно ускорить процесс обучения больших моделей при ограниченных коммуникационных ресурсах. Это открывает новые возможности для применения машинного обучения в различных областях, где важна защита конфиденциальности данных. Дальнейшие исследования будут направлены на оптимизацию алгоритмов и их адаптацию к более сложным задачам федеративного обучения.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

16 сентября, 13:21
Адель Романова

Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

15 сентября, 10:36
Игорь Байдов

Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.

15 сентября, 11:30
РНФ

Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

11 сентября, 12:04
ПНИПУ

Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно