• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
20.12.2024
ФизТех
290

Новые алгоритмы ускоряют машинное обучение в децентрализованных сетях

4.4

Международная команда ученых совершила прорыв в области распределенного машинного обучения, разработав новые алгоритмы, значительно повышающие эффективность обучения моделей в федеративных сетях. Исследование, проведенное группой, куда вошли специалисты МФТИ, представляет собой значительный шаг вперед в решении проблемы высокой вычислительной сложности обучения больших моделей в распределенных системах.

Сравнение новых четырех предложенных методов (Q-NASTYA, DIANA-NASTYA, Q-RR, DIANA-RR) и существующих (FedCOM, FedPAQ) с настроенными размерами шагов и компрессором Rand-k. / © NeurIPS 2024

Результаты опубликованы в материалах конференции NeurIPS 2024. Современное машинное обучение часто опирается на обучение моделей на огромных объемах данных, что требует распределенных вычислений. Федеративное обучение (Federated Learning, FL) — это подход, позволяющий обучать модели на децентрализованных данных, хранящихся на множестве устройств (смартфоны, медицинские приборы и так далее), без прямого обмена этими данными.

Ключевая проблема федеративного обучения заключается в высокой коммуникационной сложности. А именно передача данных и вычисление градиентов на основе них (векторов, характеризующих направление изменения параметров модели) становится проблемой, которая замедляет весь процесс обучения. Коммуникационная сложность заключается в огромном количестве передач данных по сети, необходимых для достижения заданной точности решения.

Обычно для решения этой проблемы используют стохастический градиентный спуск. Он основан на том, чтобы использовать неполную информацию для вычисления градиента, выбирая используемые данные для этого случайным образом. такие методы делятся на методы с возвращением и без возвращения. При выборе с возвращением один и тот же набор данных может быть выбран несколько раз, а при выборе без возвращения каждый набор данных выбирается только один раз.

В свежей статье, представленной на конференции NeurIPS 2024, авторы предлагают новые подходы. Они разработали четыре новых алгоритма, сочетающие сжатие градиентов с методом случайной перестановки и локальными вычислениями.


Сравнение алгоритмов Q-RR, QSGD, DIANA и DIANA-RR в задаче обучения глубокой нейронной сети / © NeurIPS 2024

Первый новый алгоритм они назвали Q-RR (Quantized Random Reshuffling). Это самый наивный подход, сочетающий сжатие градиентов и метод перестановки. К сожалению, теоретический анализ показал, что этот метод не демонстрирует преимуществ перед традиционными методами сжатия градиентов.

Второй предложенный учеными метод, названный ими DIANA-RR, является модификацией первого. Они улучшили предыдущий подход, добавив снижение дополнительной дисперсии, которая возникла из-за сжатия градиентов. В результате им удалось получить алгоритм, который имеет лучшую скорость сходимости, чем существующие аналоги, основанные на выборке с возвращением.

Для лучшей адаптации к задачам федеративного обучения ученые расширили алгоритмы Q-RR и DIANA-RR, добавив локальные вычислительные шаги. Так они получили ещё два новых метода, которые назвали Q-NASTYA и DIANA-NASTYA. Эти методы используют разные размеры шагов для локальных и глобальных обновлений. Однако при этом и DIANA-NASTYA, и DIANA-RR предназначены для уменьшения дополнительной дисперсии, вносимой сжатием градиентов.

Авторы исследования провели теоретический анализ и три численных эксперимента, которые подтвердили эффективность предложенных алгоритмов. Алгоритмы DIANA-RR и DIANA-NASTYA значительно превосходят по скорости сходимости существующие методы, особенно при высокой степени сжатия градиентов и в условиях, когда требуется высокая точность.

Для моделирования в первых двух экспериментах авторы использовали решение бинарной проблемы классификации (проверке принадлежности объектов к одному из двух классов) методом логистической регрессии с регуляризацией. В первых двух экспериментах они сравнивали между собой локальные и нелокальные методы.

Оказалось, что результаты, наблюдаемые в численных экспериментах, идеально соответствовали выведенной теории.

В третьем эксперименте авторы использовали нелокальные методы для распределенного машинного обучения глубокой нейронной сети, и в нем новые методы тоже показали свое преимущество над традиционными подходами.

«Многие существующие работы в области федеративного обучения рассматривают методы стохастического градиентного спуска с возвращением. Однако недавно удалось показать как теоретически, так и практически, что методы, основанные на выборке без возвращения, например, метод случайной перестановки, работают лучше», — рассказал Абдурахмон Садиев, научный сотрудник лаборатории численных методов прикладной структурной оптимизации ФПМИ МФТИ.

Разработанные алгоритмы представляют собой важный вклад в область федеративного обучения, позволяя существенно ускорить процесс обучения больших моделей при ограниченных коммуникационных ресурсах. Это открывает новые возможности для применения машинного обучения в различных областях, где важна защита конфиденциальности данных. Дальнейшие исследования будут направлены на оптимизацию алгоритмов и их адаптацию к более сложным задачам федеративного обучения.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 21:01
Юлия Трепалина

В прошлых исследованиях о скулшутинге в Соединенных Штатах некоторые эксперты называли основной причиной случаев массовой стрельбы в учебных заведениях наличие большого количества легальных «стволов» на руках у людей. Но в подобных работах редко систематически анализировали роль огнестрельного оружия в жизни школьных стрелков. По мнению профессора социологии Энн Нассауер из Эрфуртского университета (Германия), эта деталь роднит большинство совершавших такого рода нападения в США.

Вчера, 19:20
Березин Александр

Западные колонии финикийцев включали сильнейшую морскую державу древнего Средиземноморья — Карфаген. Его жители использовали финикийский язык и поклонялись соответствующим богам. Теперь генетики заявили, что практически все эти люди — не потомки финикийских колонистов. Происхождение их в связи с этим довольно загадочно.

Вчера, 14:46
Юлия Трепалина

Многие, наверное, слышали фразу «Между ними возникла „химия“». Поясняя смысл выражения, часто говорят, что любовная химия между мужчиной и женщиной — это нечто сложное и с трудом поддающееся определению. Однако ученые не любят такой неясности, поскольку она мешает исследовать явление. Недавно группа психологов с помощью опроса выяснила основные компоненты взаимного влечения в паре, которое принято называть романтической, или любовной, химией.

20 апреля
Полина Меньшова

Распространено мнение, что, чем чаще пара занимается сексом, тем сильнее каждый из партнеров доволен отношениями. Международная команда исследователей проверила этот тезис.

18 апреля
Игорь Байдов

В 2006 году исследователи из Великобритании объявили, что легендарный антикитерский механизм, древнегреческий «компьютер», мог быть всего лишь игрушкой для демонстрации астрономических явлений. Авторы нового исследования подтвердили это, построив математическую модель на основе данных своих коллег, которая показала, что шестерни устройства заклинивало при запуске. Но несмотря на полученные результаты, ученые пытаются спасти репутацию древнего чуда техники, обвинив предыдущую команду в ряде ошибок.

18 апреля
Любовь

Примерно 41-42 тысячи лет назад на Земле произошел кратковременный сдвиг магнитных полюсов, который мог способствовать вымиранию неандертальцев, но не Homo sapiens — их выживание авторы нового исследования связали с появлением теплой одежды и добычей охры.

8 апреля
Березин Александр

До 13 тысяч лет назад в Северной Америке жил вид, который ученые до недавнего времени считали волком. Компания Colossal Biosciences объявила о возрождении этого вымершего вида, но биологические детали ставят ее заявление под серьезное сомнение.

2 апреля
Березин Александр

Известный американский отраслевой обозреватель Эрик Бергер взял интервью у экипажа космического корабля Boeing, из-за технических проблем которого два астронавта задержались на орбите на девять месяцев вместо одной недели. Детали, которые они озвучили, указывают на серьезные проблемы Starliner, о которых ранее умалчивали. Люди провели немало времени при глубоко нештатной температуре. При слегка другом сценарии миссии экипаж корабля мог погибнуть. Официальные заявления NASA и Boeing сразу после июньского полета к МКС, судя по интервью, были заведомо неправдивыми.

16 апреля
Андрей

Многие знают, как популярны сувениры из окаменелостей — зубы древних акул или полированные панцири аммонитов. Но чем реже встречаются такие артефакты, тем они ценнее, то есть на них можно много заработать. И это проблема для палеонтологов. Американский специалист по тираннозаврам оценил ущерб, который нанесла коммерческая добыча костей T. rex и подсчитал среднюю цену таких образцов. Оказалось, больше половины найденных тирексов находится в частных руках, а значит, для науки они недоступны или ненадежны.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно