• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
16.06.2023
РНФ
364

Алгоритмы машинного обучения помогут точнее оценивать будущее российских компаний

4.4

Экономисты определили, что использование алгоритмов машинного обучения вместо традиционных математических моделей позволяет на 10 процентов точнее прогнозировать рентабельность — упрощенно говоря, прибыльность — фирм. При этом самыми важными факторами, от которых в наибольшей степени зависит будущее компании, оказались ее рентабельность за предыдущий год, наличие роста продаж и объем веб-трафика. Полученные данные помогут владельцам фирм, инвесторам и государству лучше оценивать и прогнозировать экономическое состояние российских компаний.

Алгоритмы машинного обучения помогут точнее оценивать будущее российских компаний
Алгоритмы машинного обучения помогут точнее оценивать будущее российских компаний / ©Getty images / Автор: Messiena Lucretius

Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Mathematics. Рентабельность торговых компаний зависит от многих факторов: их размера, стратегии управления, умения выстраивать хорошие взаимоотношения с клиентами, а также глобальных кризисов. Чтобы спрогнозировать будущее фирмы — например определить, сколько прибыли она принесет владельцам в следующем году, — экономисты обычно используют регрессионные модели. Этот подход позволяет математически рассчитать, насколько интересующий фактор (в данном случае — прибыль) зависит от нескольких других, например, от тех, что перечислены выше.

Однако регрессионные модели не всегда корректно отражают взаимную зависимость различных экономических показателей из-за того, что связи между ними могут быть довольно сложными. В данном случае могут помочь методы машинного обучения, которые, опираясь на большие массивы данных, находят скрытые на первый взгляд зависимости и предлагают более точное решение. Но результаты их сравнения оказываются неоднозначными: одни авторы утверждают, что более точные результаты выдает все-таки регрессионный анализ, другие — что компьютерный алгоритм.

Ученые из Национального исследовательского Томского политехнического университета (Томск) с коллегой из Санкт-Петербургского государственного университета (Санкт-Петербург) и Географического института имени Йована Цвийича (Сербия) на практике сравнили точность методов машинного обучения и регрессионного подхода для прогнозирования рентабельности фирм. Авторы использовали данные о 551 торговой компании за 2017–2020 годы. Среди показателей, которые интересовали ученых как потенциально влияющие на рентабельность, были размер и возраст фирмы, рентабельность за предыдущий год, наличие роста продаж, веб-трафик и другие.

Авторы использовали пять различных компьютерных алгоритмов: три простых, включающих разные типы нейронных сетей, и два сложных. Последние — так называемые портфели и ансамбли — сочетали в себе несколько простых алгоритмов, способных учитывать и исправлять ошибки друг друга. Программы обучались на наборах данных за 2017–2019 годы, тогда как информация за 2020 год использовалась непосредственно для их тестирования.

Авторы исследования: Л. Ю. Спицына, Д. Б. Вукович, Е. Б. Грибанова, И. А. Лызин / ©Любовь Спицына

Затем математическими методами исследователи рассчитали ошибки прогнозов, полученных с помощью регрессионного анализа и компьютерных алгоритмов. Оказалось, что алгоритмы, называемые портфелями и ансамблями, давали наиболее точные прогнозы. При этом самых достоверных оценок удавалось достичь, опираясь на такие показатели фирм как рентабельность за предыдущий год, динамика роста продаж и веб-трафик. При применении сложных методов машинного обучения (портфели и ансамбли методов) в среднем медиана абсолютной ошибки прогноза составила около трех процентов.

Это объясняется тем, что данные факторы в значительной степени влияют на состояние компании в будущем. Так, например ученые определили, что максимальной прибыли фирмы достигают, если у них постоянно возрастает количество продаж, и при этом они развивают цифровые каналы торговли, например, через веб-сайт. Если соблюдается лишь одно из условий, доход компании падает. Худшая ситуация наблюдается при падении продаж и одновременно высокой посещаемости сайта фирмы.

«Наше исследование показало, что применение сложных методов машинного обучения (портфели и ансамбли методов) при прогнозировании рентабельности фирм позволяет повысить точность прогноза и снизить абсолютную ошибку прогноза на 10% по сравнению с традиционной моделью регрессии. При этом наиболее достоверные результаты они выдают, совместно оценивая показатели продаж, рентабельности предыдущего года и веб-трафика. Наше исследование будет полезно как для владельцев фирм, так для инвесторов и государственных чиновников, поскольку позволит лучше оценивать перспективы развития экономики страны», — рассказывает руководитель проекта, поддержанного грантом РНФ, Любовь Спицына, кандидат экономических наук, доцент отделения социально-гуманитарных наук Томского политехнического университета. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
РНФ осуществляет финансовую и организационную поддержку фундаментальных и поисковых научных исследований посредством финансирования прошедших конкурсный отбор научных, научно-технических программ и проектов.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Позавчера, 12:38
ПНИПУ

Происхождение нефти и газа стали изучать еще до возникновения нефтяной промышленности. О генезисе важных ресурсов до сих пор нет единого мнения. Ученые Пермского Политеха рассказали, откуда они взялись на нашей планете, возможна ли их добыча в космосе, как нефть используется в продуктах питания и что такое «дверь в преисподнюю».

Позавчера, 08:35
Полина Меньшова

Ледник Туэйтса в Западной Антарктиде, который также называют «ледником Судного дня», может растаять раньше, чем считали ученые. Теплые океанские воды воздействуют на него сильнее, чем предполагалось, показали новые спутниковые данные.

21 мая
Андрей

Группа энтомологов решила уточнить, откуда происходят предки современных рыжих тараканов и каким образом те захватили человеческие жилища почти на всех континентах. Для этого ученые секвенировали ДНК примерно 300 насекомых и смоделировали наиболее вероятные сценарии расселения на основе генетической информации.

20 мая
Полина Меньшова

Британский учитель географии Грэм Сеньор работал в саду и случайно обнаружил в земле небольшой прямоугольный камень. Оказалось, что на артефакте высечен текст, написанный с помощью древнего кельтского алфавита огам.

21 мая
Андрей

Группа энтомологов решила уточнить, откуда происходят предки современных рыжих тараканов и каким образом те захватили человеческие жилища почти на всех континентах. Для этого ученые секвенировали ДНК примерно 300 насекомых и смоделировали наиболее вероятные сценарии расселения на основе генетической информации.

18 мая
Полина Меньшова

При гипертонии пациентам рекомендуют аэробные тренировки, включающие в себя, например, ходьбу, бег, танцы, езду на велосипеде. Но такая физическая нагрузка положительно влияет на артериальное давление только в вечернее время, выяснили физиологи из Бразилии и США.

24 апреля
Ольга Иванова

Ученые из Австралии и Канады пришли к выводу, что подавляющее большинство одиноких людей не вступает в романтические отношения из-за страха. С одной стороны ими руководят опасения, что их отвергнут, с другой — что они потеряют свою независимость.

15 мая
НИУ ВШЭ

Международный коллектив исследователей при участии ученых из Института когнитивных нейронаук НИУ ВШЭ изучил, как выбор иностранного языка влияет на когнитивные способности человека. Оказалось, что языки, непохожие на родной, стимулируют когнитивную функцию на начальном этапе их изучения, а близкие к родному имеют отложенный эффект и помогают мозгу эффективнее работать при более высоком уровне владения иностранным языком.

3 мая
Василий Парфенов

Ледяной покров Антарктики претерпевает значительные изменения на протяжении года, и его поведение хорошо изучено в общем. Но некоторые локальные аномалии объяснить не получается вот уже несколько десятилетий. Одна из них — полынья возвышения Мод, или полынья моря Уэдделла, которая появляется нерегулярно на одном и том же месте. Международная команда океанологов, наконец, смогла разгадать механизмы ее образования.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: