• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
16.06.2023, 08:30
РНФ
388

Алгоритмы машинного обучения помогут точнее оценивать будущее российских компаний

❋ 4.4

Экономисты определили, что использование алгоритмов машинного обучения вместо традиционных математических моделей позволяет на 10 процентов точнее прогнозировать рентабельность — упрощенно говоря, прибыльность — фирм. При этом самыми важными факторами, от которых в наибольшей степени зависит будущее компании, оказались ее рентабельность за предыдущий год, наличие роста продаж и объем веб-трафика. Полученные данные помогут владельцам фирм, инвесторам и государству лучше оценивать и прогнозировать экономическое состояние российских компаний.

Алгоритмы машинного обучения помогут точнее оценивать будущее российских компаний
Алгоритмы машинного обучения помогут точнее оценивать будущее российских компаний / ©Getty images / Автор: Messiena Lucretius

Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Mathematics. Рентабельность торговых компаний зависит от многих факторов: их размера, стратегии управления, умения выстраивать хорошие взаимоотношения с клиентами, а также глобальных кризисов. Чтобы спрогнозировать будущее фирмы — например определить, сколько прибыли она принесет владельцам в следующем году, — экономисты обычно используют регрессионные модели. Этот подход позволяет математически рассчитать, насколько интересующий фактор (в данном случае — прибыль) зависит от нескольких других, например, от тех, что перечислены выше.

Однако регрессионные модели не всегда корректно отражают взаимную зависимость различных экономических показателей из-за того, что связи между ними могут быть довольно сложными. В данном случае могут помочь методы машинного обучения, которые, опираясь на большие массивы данных, находят скрытые на первый взгляд зависимости и предлагают более точное решение. Но результаты их сравнения оказываются неоднозначными: одни авторы утверждают, что более точные результаты выдает все-таки регрессионный анализ, другие — что компьютерный алгоритм.

Ученые из Национального исследовательского Томского политехнического университета (Томск) с коллегой из Санкт-Петербургского государственного университета (Санкт-Петербург) и Географического института имени Йована Цвийича (Сербия) на практике сравнили точность методов машинного обучения и регрессионного подхода для прогнозирования рентабельности фирм. Авторы использовали данные о 551 торговой компании за 2017–2020 годы. Среди показателей, которые интересовали ученых как потенциально влияющие на рентабельность, были размер и возраст фирмы, рентабельность за предыдущий год, наличие роста продаж, веб-трафик и другие.

Авторы использовали пять различных компьютерных алгоритмов: три простых, включающих разные типы нейронных сетей, и два сложных. Последние — так называемые портфели и ансамбли — сочетали в себе несколько простых алгоритмов, способных учитывать и исправлять ошибки друг друга. Программы обучались на наборах данных за 2017–2019 годы, тогда как информация за 2020 год использовалась непосредственно для их тестирования.

Авторы исследования: Л. Ю. Спицына, Д. Б. Вукович, Е. Б. Грибанова, И. А. Лызин / ©Любовь Спицына

Затем математическими методами исследователи рассчитали ошибки прогнозов, полученных с помощью регрессионного анализа и компьютерных алгоритмов. Оказалось, что алгоритмы, называемые портфелями и ансамблями, давали наиболее точные прогнозы. При этом самых достоверных оценок удавалось достичь, опираясь на такие показатели фирм как рентабельность за предыдущий год, динамика роста продаж и веб-трафик. При применении сложных методов машинного обучения (портфели и ансамбли методов) в среднем медиана абсолютной ошибки прогноза составила около трех процентов.

Это объясняется тем, что данные факторы в значительной степени влияют на состояние компании в будущем. Так, например ученые определили, что максимальной прибыли фирмы достигают, если у них постоянно возрастает количество продаж, и при этом они развивают цифровые каналы торговли, например, через веб-сайт. Если соблюдается лишь одно из условий, доход компании падает. Худшая ситуация наблюдается при падении продаж и одновременно высокой посещаемости сайта фирмы.

«Наше исследование показало, что применение сложных методов машинного обучения (портфели и ансамбли методов) при прогнозировании рентабельности фирм позволяет повысить точность прогноза и снизить абсолютную ошибку прогноза на 10% по сравнению с традиционной моделью регрессии. При этом наиболее достоверные результаты они выдают, совместно оценивая показатели продаж, рентабельности предыдущего года и веб-трафика. Наше исследование будет полезно как для владельцев фирм, так для инвесторов и государственных чиновников, поскольку позволит лучше оценивать перспективы развития экономики страны», — рассказывает руководитель проекта, поддержанного грантом РНФ, Любовь Спицына, кандидат экономических наук, доцент отделения социально-гуманитарных наук Томского политехнического университета. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
РНФ осуществляет финансовую и организационную поддержку фундаментальных и поисковых научных исследований посредством финансирования прошедших конкурсный отбор научных, научно-технических программ и проектов.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
1 ноября, 12:08
ПНИПУ

В среднем человек зевает от семи до двадцати трех раз в день. Ученые Пермского Политеха рассказали, что происходит в этот момент с организмом, на кого не распространяется «заразительное» действие, как его эффект меняется в зависимости от наличия стресса, головной боли, сонливости и скуки и почему связь зевоты, нехватки воздуха и терморегуляции вторична.

31 октября, 10:59
НИУ ВШЭ

Команда исследователей из России и Великобритании впервые подробно описала, как формировалась и менялась система подготовки переводчиков русского жестового языка (РЖЯ). Это масштабное исследование охватывает период с XIX века до наших дней, раскрывая как достижения, так и проблемы профессиональной среды.

2 ноября, 09:54
Юлия Трепалина

Новый эксперимент американских исследователей не подтвердил выводы некоторых прошлых работ о том, что образы безумных ученых подрывают доверие детей к представителям науки.

1 ноября, 14:20
Игорь Байдов

Международная группа ученых провела необычный эксперимент. Исследователи взяли образцы фекалий у детей с разными типами темперамента и пересадили их крысам. После этого животные начали вести себя по-разному: те, кто получил микробиоту от активных детей, стали смелее и больше исследовали новое пространство. Это открытие намекает на то, что бактерии, живущие в кишечнике с детства, в какой-то мере способны влиять на формирование личности.

1 ноября, 10:14
Максим

Международная команда ученых обнаружила в море Уэдделла ранее неизвестное место массового гнездования антарктических рыб Lindbergichthys nudifrons. Океанологи зафиксировали скопления более тысячи ухоженных гнезд, расположенных по сложным геометрическим узорам. Коллективное расселение помогает рыбам защищаться от хищников.

1 ноября, 08:50
Любовь С.

Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

13 октября, 11:10
Илья Гриднев

Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.

24 октября, 14:02
РТУ МИРЭА

В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно