Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Новая программа поможет найти недобросовестных заемщиков
Российские и китайские исследователи разработали поисковую модель, которая может определить местонахождение кредитных заемщиков, уклоняющихся от финансовых обязательств. Программа способна обрабатывать большие объемы данных на нескольких информационных площадках одновременно и рассчитана на китайских заемщиков. В основе разработки технология машинного обучения: в процессе поиска программа совершенствуется, что повышает качество и точность результата. Как поясняют разработчики, поисковая модель поможет повысить эффективность работы финансовых учреждений, позволяя им быстрее реагировать на изменения кредитоспособности клиентов и оперативно принимать меры по снижению рисков.
Высокая кредитная нагрузка населения представляет опасность для финансовой устойчивости государства. Во-первых, это может привести к сокращению потребления населения из-за обслуживания кредитного долга, что может сказаться на замедлении экономического роста. Во-вторых, при невыполнении финансовых обязательств кредитные организации могут стать более осторожны при выдаче кредитов, что сократит количество доступных заемных средств.
Банк международных расчетов утверждает, что общий объем задолженности китайских граждан приблизился к 10,75 триллионам долларов — это 61,9 процента от уровня национального ВВП. Кредитная нагрузка населения выше только в США (74,4 процента от ВВП) и Японии (68,2 процента). По данным South China Morning Post, основная часть задолженности китайских домохозяйств приходится на ипотечное кредитование — сейчас этот показатель равен 5,38 триллионам долларов.
Результаты нового исследования ученые опубликовали в Axioms. «Наша программа имеет ряд преимуществ по сравнению с другими программами для поиска должников. Во-первых, она базируется на машинном обучении с использованием кроссплатформенного поиска информации, что позволяет мониторить несколько интернет-платформ одновременно. Во-вторых, наша разработка способна анализировать различные типы данных, включая аудио-, видео- и текстовые файлы. Такая программа может быть полезна для финансовых учреждений, кредитных компаний и страховых организаций, которые стремятся снизить финансовый риск и улучшить процесс выдачи кредитов», — поясняет научный сотрудник школы экономики и менеджмента, доцент кафедры экономики УрФУ Ибрагим Алнафра.
Функциональность аналогичных разработок меньше, поскольку часто они опираются лишь на один источник информации — например, на данные об использовании мобильной связи. На практике информация о недобросовестных заемщиках разбросана на нескольких информационных платформах, поэтому для получения более точных результатов необходимо обрабатывать большие объемы данных сразу с нескольких ресурсов.
«Ключевая особенность нашей программы заключается в использовании многоагентного подхода. Каждая группа агентов отвечает за свою сферу поиска. Например, агенты кооперативного управления определяют цель поиска, агенты сбора данных находят информацию о заемщиках на разных платформах, а агенты анализа данных обрабатывают полученную информацию. Такая структура позволяет эффективно работать с большими объемами данных на разных информационных платформах», — рассказывает Ибрагим Алнафра.
Для поиска информации о заемщике пользователю необходимо ввести ряд данных — имя, место рождения, возраст, номер мобильного телефона, время последнего контакта и адресные данные. Затем на основе этой информации программа анализирует множество интернет-платформ, которые включают в себя социальные сети (например, WeChat, Weibo, QQ и TikTok), платформы электронной коммерции (например, данные об интернет-покупках или аренде автомобиля), банковские приложения, правительственные приложения, а также платформы однорангового кредитования (вид кредитования, когда сделка происходит между физическими лицами). После получения информации о предполагаемом местоположении заемщика данные о нем будут сохранены для дальнейшего использования.
«В процессе поиска алгоритм оценивает для заемщика важность того или иного источника информации на основании его пользовательской активности. Например, если человек часто публикует комментарии на платформе Weibo, то алгоритм будет склоняться к более детальному анализу информации именно этой платформы», — комментирует Ибрагим Алнафра.
Ученые отмечают, что Китай был выбран для исследования из-за широкого распространения цифровых технологий в обществе. Социальные сети, мобильные платежи, онлайн-торговля обеспечивают огромное количество данных для анализа.
«Глубокая цифровизация общества является ключевым фактором, мотивирующим нас сосредоточиться именно на этой стране. Кроме того, на фоне продолжающегося кризиса недвижимости в Китае многие люди сталкиваются с проблемой выполнения своих финансовых обязательств. Из-за этого значительная часть населения либо не в состоянии выполнить свои платежные обязательства, либо решила полностью прекратить платежи в ответ на экономические трудности», — заключает Ибрагим Алнафра.
Отметим, в исследовании приняли участие специалисты из Уральского федерального университета, Института Наньфан Гуанчжоу, Уханьского текстильного университета, а также Центрального южного университета.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.
Команда исследователей из Италии и США предложила два способа, с помощью которых гипотетический зонд сможет быстро добраться до одного из самых отдаленных и малоизученных объектов Солнечной системы. Речь о Седне — транснептуновом теле, которое находится за орбитой Плутона. По мнению инженеров, эти передовые технологии смогут доставить аппарат к Седне за семь и 10 лет.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии