• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
11.12.2023, 11:03
УрФУ
188

Новая программа поможет найти недобросовестных заемщиков

❋ 4.4

Российские и китайские исследователи разработали поисковую модель, которая может определить местонахождение кредитных заемщиков, уклоняющихся от финансовых обязательств. Программа способна обрабатывать большие объемы данных на нескольких информационных площадках одновременно и рассчитана на китайских заемщиков. В основе разработки технология машинного обучения: в процессе поиска программа совершенствуется, что повышает качество и точность результата. Как поясняют разработчики, поисковая модель поможет повысить эффективность работы финансовых учреждений, позволяя им быстрее реагировать на изменения кредитоспособности клиентов и оперативно принимать меры по снижению рисков.

Новая программа поможет найти недобросовестных заемщиков
Новая программа поможет найти недобросовестных заемщиков / © Getty images / Автор: Александр Литвинов

Высокая кредитная нагрузка населения представляет опасность для финансовой устойчивости государства. Во-первых, это может привести к сокращению потребления населения из-за обслуживания кредитного долга, что может сказаться на замедлении экономического роста. Во-вторых, при невыполнении финансовых обязательств кредитные организации могут стать более осторожны при выдаче кредитов, что сократит количество доступных заемных средств.

Банк международных расчетов утверждает, что общий объем задолженности китайских граждан приблизился к 10,75 триллионам долларов — это 61,9 процента от уровня национального ВВП. Кредитная нагрузка населения выше только в США (74,4 процента от ВВП) и Японии (68,2 процента). По данным South China Morning Post, основная часть задолженности китайских домохозяйств приходится на ипотечное кредитование — сейчас этот показатель равен 5,38 триллионам долларов.

Результаты нового исследования ученые опубликовали в Axioms. «Наша программа имеет ряд преимуществ по сравнению с другими программами для поиска должников. Во-первых, она базируется на машинном обучении с использованием кроссплатформенного поиска информации, что позволяет мониторить несколько интернет-платформ одновременно. Во-вторых, наша разработка способна анализировать различные типы данных, включая аудио-, видео- и текстовые файлы. Такая программа может быть полезна для финансовых учреждений, кредитных компаний и страховых организаций, которые стремятся снизить финансовый риск и улучшить процесс выдачи кредитов», — поясняет научный сотрудник школы экономики и менеджмента, доцент кафедры экономики УрФУ Ибрагим Алнафра.

Функциональность аналогичных разработок меньше, поскольку часто они опираются лишь на один источник информации — например, на данные об использовании мобильной связи. На практике информация о недобросовестных заемщиках разбросана на нескольких информационных платформах, поэтому для получения более точных результатов необходимо обрабатывать большие объемы данных сразу с нескольких ресурсов.

«Ключевая особенность нашей программы заключается в использовании многоагентного подхода. Каждая группа агентов отвечает за свою сферу поиска. Например, агенты кооперативного управления определяют цель поиска, агенты сбора данных находят информацию о заемщиках на разных платформах, а агенты анализа данных обрабатывают полученную информацию. Такая структура позволяет эффективно работать с большими объемами данных на разных информационных платформах», — рассказывает Ибрагим Алнафра.

Для поиска информации о заемщике пользователю необходимо ввести ряд данных — имя, место рождения, возраст, номер мобильного телефона, время последнего контакта и адресные данные. Затем на основе этой информации программа анализирует множество интернет-платформ, которые включают в себя социальные сети (например, WeChat, Weibo, QQ и TikTok), платформы электронной коммерции (например, данные об интернет-покупках или аренде автомобиля), банковские приложения, правительственные приложения, а также платформы однорангового кредитования (вид кредитования, когда сделка происходит между физическими лицами). После получения информации о предполагаемом местоположении заемщика данные о нем будут сохранены для дальнейшего использования.

«В процессе поиска алгоритм оценивает для заемщика важность того или иного источника информации на основании его пользовательской активности. Например, если человек часто публикует комментарии на платформе Weibo, то алгоритм будет склоняться к более детальному анализу информации именно этой платформы», — комментирует Ибрагим Алнафра.

Ученые отмечают, что Китай был выбран для исследования из-за широкого распространения цифровых технологий в обществе. Социальные сети, мобильные платежи, онлайн-торговля обеспечивают огромное количество данных для анализа.

«Глубокая цифровизация общества является ключевым фактором, мотивирующим нас сосредоточиться именно на этой стране. Кроме того, на фоне продолжающегося кризиса недвижимости в Китае многие люди сталкиваются с проблемой выполнения своих финансовых обязательств. Из-за этого значительная часть населения либо не в состоянии выполнить свои платежные обязательства, либо решила полностью прекратить платежи в ответ на экономические трудности», — заключает Ибрагим Алнафра.

Отметим, в исследовании приняли участие специалисты из Уральского федерального университета, Института Наньфан Гуанчжоу, Уханьского текстильного университета, а также Центрального южного университета.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Уральский федеральный университет (УрФУ) расположен в Екатеринбурге, выполняет функции проектного офиса Уральского межрегионального научно-образовательного центра мирового уровня (УМНОЦ). В УрФУ обучается более 36 000 студентов по 334 образовательным программам. Основан 19 октября 1920 года.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
23 января, 08:27
Полина Меньшова

В основе современной грамматики лежит теория, согласно которой в сознании человека язык «хранится» в виде иерархических структур — групп из двух слов, где одна составляющая зависит от другой, но вместе они образуют единое целое с точки зрения смысла. Однако лингвисты из Дании продемонстрировали, что устройство языка может быть проще: многие значимые группы слов представляют собой линейные последовательности, а не иерархии.

23 января, 15:04
Максим Абдулаев

Австралийские геологи нашли новые доказательства того, что мегалиты попали на равнину Солсбери благодаря сложной логистике древних строителей. Изучив минеральный состав почвы вокруг монумента, исследователи исключили возможность того, что огромные глыбы принесло туда движение ледников.

23 января, 15:09
Илья Гриднев

Крупнейшие живые организмы девонского периода — прототакситы — не относились ни к грибам, ни к растениям, ни к лишайникам. Комплексный химический и структурный анализ помог выявить, что это ранее неизвестная и полностью вымершая ветвь биологической эволюции.

20 января, 13:40
Александр Березин

Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.

18 января, 11:45
Игорь Байдов

Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.

19 января, 07:55
Игорь Байдов

Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.

12 января, 15:39
Александр Березин

От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.

20 января, 13:40
Александр Березин

Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.

2 января, 12:27
Адель Романова

Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно