Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Новая программа поможет найти недобросовестных заемщиков
Российские и китайские исследователи разработали поисковую модель, которая может определить местонахождение кредитных заемщиков, уклоняющихся от финансовых обязательств. Программа способна обрабатывать большие объемы данных на нескольких информационных площадках одновременно и рассчитана на китайских заемщиков. В основе разработки технология машинного обучения: в процессе поиска программа совершенствуется, что повышает качество и точность результата. Как поясняют разработчики, поисковая модель поможет повысить эффективность работы финансовых учреждений, позволяя им быстрее реагировать на изменения кредитоспособности клиентов и оперативно принимать меры по снижению рисков.
Высокая кредитная нагрузка населения представляет опасность для финансовой устойчивости государства. Во-первых, это может привести к сокращению потребления населения из-за обслуживания кредитного долга, что может сказаться на замедлении экономического роста. Во-вторых, при невыполнении финансовых обязательств кредитные организации могут стать более осторожны при выдаче кредитов, что сократит количество доступных заемных средств.
Банк международных расчетов утверждает, что общий объем задолженности китайских граждан приблизился к 10,75 триллионам долларов — это 61,9 процента от уровня национального ВВП. Кредитная нагрузка населения выше только в США (74,4 процента от ВВП) и Японии (68,2 процента). По данным South China Morning Post, основная часть задолженности китайских домохозяйств приходится на ипотечное кредитование — сейчас этот показатель равен 5,38 триллионам долларов.
Результаты нового исследования ученые опубликовали в Axioms. «Наша программа имеет ряд преимуществ по сравнению с другими программами для поиска должников. Во-первых, она базируется на машинном обучении с использованием кроссплатформенного поиска информации, что позволяет мониторить несколько интернет-платформ одновременно. Во-вторых, наша разработка способна анализировать различные типы данных, включая аудио-, видео- и текстовые файлы. Такая программа может быть полезна для финансовых учреждений, кредитных компаний и страховых организаций, которые стремятся снизить финансовый риск и улучшить процесс выдачи кредитов», — поясняет научный сотрудник школы экономики и менеджмента, доцент кафедры экономики УрФУ Ибрагим Алнафра.
Функциональность аналогичных разработок меньше, поскольку часто они опираются лишь на один источник информации — например, на данные об использовании мобильной связи. На практике информация о недобросовестных заемщиках разбросана на нескольких информационных платформах, поэтому для получения более точных результатов необходимо обрабатывать большие объемы данных сразу с нескольких ресурсов.
«Ключевая особенность нашей программы заключается в использовании многоагентного подхода. Каждая группа агентов отвечает за свою сферу поиска. Например, агенты кооперативного управления определяют цель поиска, агенты сбора данных находят информацию о заемщиках на разных платформах, а агенты анализа данных обрабатывают полученную информацию. Такая структура позволяет эффективно работать с большими объемами данных на разных информационных платформах», — рассказывает Ибрагим Алнафра.
Для поиска информации о заемщике пользователю необходимо ввести ряд данных — имя, место рождения, возраст, номер мобильного телефона, время последнего контакта и адресные данные. Затем на основе этой информации программа анализирует множество интернет-платформ, которые включают в себя социальные сети (например, WeChat, Weibo, QQ и TikTok), платформы электронной коммерции (например, данные об интернет-покупках или аренде автомобиля), банковские приложения, правительственные приложения, а также платформы однорангового кредитования (вид кредитования, когда сделка происходит между физическими лицами). После получения информации о предполагаемом местоположении заемщика данные о нем будут сохранены для дальнейшего использования.
«В процессе поиска алгоритм оценивает для заемщика важность того или иного источника информации на основании его пользовательской активности. Например, если человек часто публикует комментарии на платформе Weibo, то алгоритм будет склоняться к более детальному анализу информации именно этой платформы», — комментирует Ибрагим Алнафра.
Ученые отмечают, что Китай был выбран для исследования из-за широкого распространения цифровых технологий в обществе. Социальные сети, мобильные платежи, онлайн-торговля обеспечивают огромное количество данных для анализа.
«Глубокая цифровизация общества является ключевым фактором, мотивирующим нас сосредоточиться именно на этой стране. Кроме того, на фоне продолжающегося кризиса недвижимости в Китае многие люди сталкиваются с проблемой выполнения своих финансовых обязательств. Из-за этого значительная часть населения либо не в состоянии выполнить свои платежные обязательства, либо решила полностью прекратить платежи в ответ на экономические трудности», — заключает Ибрагим Алнафра.
Отметим, в исследовании приняли участие специалисты из Уральского федерального университета, Института Наньфан Гуанчжоу, Уханьского текстильного университета, а также Центрального южного университета.
Зубная эмаль, в отличие от костей, не восстанавливается, потому что в ней нет живых клеток. Кератин, который содержится в человеческих волосах и шерсти животных, может защитить зубы от кариеса и даже восстанавливает уже поврежденную эмаль. Это обнаружили ученые из Великобритании.
Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.
Когда модели искусственного интеллекта ошибаются и выдают неверный ответ на запрос, пользователи пытаются выяснить причину этой ошибки, задавая вопрос самому ИИ-помощнику. Историк технологий Бендж Эдвардс объяснил, почему делать так нет смысла и как это связано с устройством нейросетей.
Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.
Чтобы проверить законы физики в условиях, недоступных на Земле, астрофизик Козимо Бамби (Cosimo Bambi) из Фуданьского университета (Китай) предложил отправить к центру ближайшей черной дыры «нанокрафт» — крошечный зонд, способный добраться до цели примерно за 60-75 лет благодаря наземной лазерной установке.
Ученым известны случаи близких контактов усатых китов (Mysticeti) и их дальних родственников дельфинов (Delphinidae) в дикой природе, но подобные взаимодействия ранее считали редкостью. Австралийские специалисты, изучающие китообразных, собрали почти две сотни видео и фото со всего мира, опровергающих это мнение. Судя по свидетельствам, чаще всего подобное «общение» происходит между горбатыми китами и дельфинами-афалинами.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии