• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
28.06.2022
МИФИ
1 769

Нейросеть предсказала поведение лазерных импульсов

4.6

Прохождение лазерного импульса через неоднородную среду — важнейший процесс, от возможности управлять которым зависит эффективность оптической связи. К сожалению, построить его математическую модель часто невозможно. Однако можно научить нейросеть предсказывать его результаты. Об этом свидетельствует новейшее российско-китайское исследование.

Нейросеть предсказала поведение лазерных импульсов / ©Getty images / Автор: Владимир Богданов

В двух идущих друг за другом подряд номерах международного научного журнала Chaos, Solitons and Fractals входящего в список топ-1, (тома 158 и 159 за 2022 год) опубликованы результаты нового российско-китайского исследования, одним из авторов которого является заведующий кафедрой прикладной математики НИЯУ МИФИ профессор Николай Кудряшов. Тема исследования чрезвычайно актуальна, поскольку связана с развитием многих самых продвинутых технологий на основе оптических солитонов.

Как пишет ведущий научный сотрудник «Курчатовского института» Сергей Сазонов, оптический солитон — это уединенный лазерный импульс определенной длительности (от нано — до фемтосекунд), обладающий несущей частотой видимого диапазона, и способный распространяться на большие расстояния в среде без изменения своей формы.

Важнейшее свойство солитонов заключается в том, что они обладают способностью упругого взаимодействия друг с другом. Если говорить совсем упрощенно, то «столкнувшиеся» солитоны не сливаются, а проходят друг через друга, сохраняя своих параметры, но с изменением фазы. Именно поэтому на солитоны возлагаются большие надежды в системах оптической связи. С укорочением длительности солитона может увеличиваться пропускная способность соответствующих информационных систем.

Не удивительно, что большое не только научное, но и прикладное значение имеет моделирование и предсказание «поведения» солитонов в оптических средах. Оптический солитон — это нелинейная уединенная волна, учитывающая влияние нескольких параметров и процессов, но, к сожалению, не всегда с ясной математической моделью.

Взаимодействие оптического солитона со средой — это типичный пример нелинейно-динамического, или, говоря иначе, хаотического процесса. Это система, которая во многих случаях испытывает возмущение внешних факторов и может перейти к хаотическому поведению, реагируя даже на мельчайшие изменения параметров среды.

К слову: типичный пример хаотического поведения системы — климатические изменения, которую возможно в самом лучшем случае предсказать лишь на несколько дней в перед, но никогда — на следующие несколько месяцев и на год. В этом смысле предсказывать поведение оптических солитонов для некоторых сред не проще, чем предсказывать атмосферные вихри.

Как объясняет Николай Алексеевич Кудряшов, закономерности, которые описывают динамику оптических солитонов при учете дисперсии высокого порядка описываются нелинейными дифференциальными уравнениями высокого порядка. Уравнениями этого типа Николай Алексеевич занимается уже около 30 лет. К сожалению, решить построить аналитические решения таких уравнений часто невозможно — иногда просто потому, что у нас нет достаточных вычислительных мощностей, а иногда и потому математическая модель при некоторых параметрах становится хаотической.

Значит ли это, что оптическому солитону — как и погоде в будущем году — суждено остаться совершенно непредсказуемым явлением? Есть русская пословица: клин клином вышибают. А для предсказания поведения хаотической системы можно использовать другую хаотическую систему.

Вот уже несколько десятилетий, специалисты по IT для моделирования человеческого мышления создают искусственный интеллект — нейросеть. Сложная нейросеть сама представляет собой скрытую нелинейно-динамическую систему, и не соответствует детерминированной математической модели. По сути, для ученых работа сконструированной ими нейросети представляет собой «черный ящик»: известны данные на входе и известны некоторые результаты на выходе, но нет детальной картины и понимания, как первые превращаются во вторые.

Однако, нейросеть обладает важнейшим полезным свойством: обучаемостью. Нейросети обучают на известных, и признанных «удачными» случаях, когда данные и на входе, и на выходе известны, и по аналогии с этими известными случаями учатся превращать входные данные в конечные. Именно этот метод в российско-китайском исследовании применили для моделирования оптических солитонов.

В качестве «базы обучения» использованы те случаи, когда описывающие динамику солитонов дифференциальные уравнения имеют аналитические решения при некоторых значениях параметров. В данном случае использовались реальные и сложные типичные нелинейные волновые модели, включая нелинейное уравнение нелинейное уравнение Шредингера и уравнения Кортевега-де Фриза. Ну и, самое главное — в этом собственно и заключается главное новшество, предложенное учеными — в структуру нейросети были включены дополнительные данные законов сохранения, что также послужило серьезным граничным условием: ответы, противоречащие законам сохранения, сразу исключаются.

«Как одно из важных интегрируемых свойств нелинейных физических моделей, закон сохранения может создать сильную ограничивающую силу для нейронной сети при решении нелинейных физических моделей», — говорится в аннотации статьи.

Результаты нейросетевого моделирования показали, что по сравнению с традиционными методами математического моделирования, основанными на детерминированных физических моделях, использование нейросетей и машинного обучения, позволяет предсказывать оптические солитоны и их параметры скрытых нелинейных математических моделей, часто не имеющих четкой математической постановки задачи общепринятой в математической физике.

Таким образом, на наших глазах возникает новый метод изучения решений нелинейных волновых моделей путем объединения глубокого машинного обучения, нейросетей и нелинейной математической физики.  

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский ядерный университет МИФИ - ведущий российский вуз, занимающийся подготовкой высококвалифицированных инженерных кадров для атомной отрасли, науки, IT-сферы, а также других высокотехнологичных секторов экономики России. Расположен в Москве, имеет 16 филиалов в разных регионах России, в Узбекистане и Казахстане
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Позавчера, 13:18
Татьяна

Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.

Позавчера, 07:50
Игорь Байдов

В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.

Позавчера, 17:18
Редакция Naked Science

В 2023 году руководство особой экономической зоны «Алабуга» представило план развития до 2048-го: он предполагает освоение космического пространства.

27 марта
Сколтех

Ученые из Сколтеха исследовали разнообразие молекул, которые могут образовываться из атомов кислорода и углерода. Помимо широко известных углекислого и угарного газов, моделирование обнаружило две сотни экзотических, но относительно стабильных соединений этих двух элементов, многие из которых не были описаны ранее. Этот класс веществ представляет интерес для исследований космоса, аккумуляторных технологий, биохимии и — неожиданным образом — для разработки промышленной взрывчатки и ракетного топлива. Как оказалось, некоторые из открытых веществ при распаде будут высвобождать более 75 процентов взрывной энергии тротила.

Позавчера, 13:18
Татьяна

Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.

Позавчера, 07:50
Игорь Байдов

В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.

6 марта
Юлия Трепалина

В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.

15 марта
Юлия Трепалина

Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).

18 марта
Илья

Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно