• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
09.07.2024, 11:31
ТюмГУ
136

Ученые предложили эффективную модель для генерации ключевых слов в научном тексте

❋ 4.3

Исследователи Института проблем передачи информации имени А. А. Харкевича РАН и кафедры программного обеспечения Школы компьютерных наук ТюмГУ предложили подход к генерации ключевых слов для русскоязычных научных текстов с помощью модели mT5 (multilingual text-to-text transformer), дообученнной на материале текстового корпуса Keyphrases CS&Math Russian.

Ученые предложили эффективную модель для генерации ключевых слов в научном тексте / © Obi - @pixel8propix, unsplash.com

Ключевые слова – важный элемент научного текста. Их использование позволяет облегчить поиск статей, улучшить систематизацию научных текстов и резюмировать содержание статей для читателя.

Автоматизация подбора ключевых слов представляет собой актуальную задачу в условиях большого количества информационных ресурсов. Сегодня большинство методов подбора этой выборки протестировано на англоязычных текстовых корпусах, в то время как для анализа русскоязычных текстов используется достаточно узкий набор методов выделения ключевых слов.

Статья «Генерация ключевых слов для русскоязычных научных текстов с помощью модели mT5» ученых Анны Глазковой, Дмитрия Морозова, Марины Воробьевой и Андрея Ступникова вышла в журнале «Моделирование и анализ информационных систем».

Существует несколько подходов к подбору ключевых слов: извлечение их непосредственно из текста, подбор из заранее определенного перечня тематики или рубрики, генерация на основе семантики текста путем его обобщения и перефразирования. В последнем случае задача подбора ключевых слов схожа с задачей автоматического абстрактного реферирования текстов.

Большая часть широко используемых подходов к извлечению этих слов основана на выделении из текста наиболее значимых слов и словосочетаний по принципу обучения без учителя (unsupervised learning). К таким подходам относятся, в частности, статистические алгоритмы, такие как YAKE! и KP-Miner, графовые (TopicRank, TextRank) и ряд алгоритмов, основанных на применении методов машинного обучения и современных лингвистических моделей (KEA, KeyBERT).

Несмотря на впечатляющие результаты для ряда текстовых корпусов, алгоритмы, основанные на извлечении ключевых слов, обладают некоторыми ограничениями. В частности, они не способны определять количество этих слов автоматически и генерировать слова, отсутствующие в тексте в явном виде.

На практике же списки ключевых слов обычно включают в себя как слова и словосочетания, встречающиеся в тексте непосредственно, так и слова, семантически связанные с содержанием текста, но не упомянутые в нем явно. Данные ограничения могут быть преодолены при помощи нейросетевых моделей, в том числе современных лингвистических моделей для генерации текстов.

Ученые пытались преодолеть пробел в использовании современных лингвистических моделей для генерации ключевых слов для русскоязычных научных текстов. В статье представлены результаты экспериментов по генерации списка ключевых слов как последовательности токенов (единиц учета) на примере модели mT5.

Выбор модели обусловлен ее широким использованием для автоматического реферирования и, в частности, для реферирования русскоязычных текстов. Результаты сравниваются с результатами ряда широко используемых методов извлечения ключевых слов.

Среди преимуществ генерации ключевых слов с помощью предобученной лингвистической модели можно назвать отсутствие необходимости проводить нормализацию и задавать ограничения на количество и длину ключевых слов, возможность генерировать те слова, которые не упомянуты в исходном тексте в явном виде.

С другой стороны, указанные свойства могут быть также ограничениями указанного подхода. Дообучение рассмотренной модели требует наличия обучающей выборки и, вероятно, дообученная модель ограниченно пригодна для генерации ключевых слов для текстов других предметных областей.

Кроме того, эффективность предложенного подхода и значения метрик зависят от специфики корпуса текстов, используемого для экспериментов. В рассмотренном корпусе доля ключевых слов, не встречающих в тексте в явном виде, составляет 53.17 процента и 54.8 процента для обучающей и тестовой выборок соответственно.

Поскольку подходы, осуществляющие извлечение, а не генерацию ключевых слов, не способны генерировать слова данного типа, модели генерации текста, подобные mT5, имеют преимущество на таких корпусах. Работа выполнена в рамках проекта, поддержанного грантом Президента России для молодых ученых — кандидатов наук.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Тюменский государственный университет (ТюмГУ) — первый университет Тюменской области, был открыт в 1930 году. Готовит специалистов по 175 направлениям подготовки. Университет входит в число участников Проекта 5-100 — программы повышения международной конкурентоспособности российских вузов среди ведущих мировых научно-образовательных центров.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
16 августа, 19:09
Адель Романова

Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.

16 августа, 11:58
Александр Березин

Новый подход к быстрому поиску жизни может однозначно обнаруживать ее всего одним инструментом. Он уже есть на борту обоих действующих американских марсоходов. Правда, NASA может не захотеть воспользоваться этой возможностью.

17 августа, 11:56
Любовь С.

Чтобы понять, как именно мозг объединяет разные сенсорные сигналы, ученые проверили реакцию добровольцев на простые визуальные и слуховые стимулы, отслеживая изменения в движении точек на экране и в звуковых сигналах с помощью ЭЭГ. Результаты показали, что за обработку информации ответственны разные процессы, которые «сходятся» в едином механизме в решающий момент.

16 августа, 19:09
Адель Романова

Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.

12 августа, 11:29
Юлия Трепалина

Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.

16 августа, 11:58
Александр Березин

Новый подход к быстрому поиску жизни может однозначно обнаруживать ее всего одним инструментом. Он уже есть на борту обоих действующих американских марсоходов. Правда, NASA может не захотеть воспользоваться этой возможностью.

25 июля, 07:47
Адель Романова

Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.

6 августа, 20:59
Татьяна Пичугина

Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.

22 июля, 14:44
ФизТех

Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет.  Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно