• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
09.07.2024, 11:31
ТюмГУ
1
144

Ученые предложили эффективную модель для генерации ключевых слов в научном тексте

❋ 4.3

Исследователи Института проблем передачи информации имени А. А. Харкевича РАН и кафедры программного обеспечения Школы компьютерных наук ТюмГУ предложили подход к генерации ключевых слов для русскоязычных научных текстов с помощью модели mT5 (multilingual text-to-text transformer), дообученнной на материале текстового корпуса Keyphrases CS&Math Russian.

Ученые предложили эффективную модель для генерации ключевых слов в научном тексте / © Obi - @pixel8propix, unsplash.com

Ключевые слова – важный элемент научного текста. Их использование позволяет облегчить поиск статей, улучшить систематизацию научных текстов и резюмировать содержание статей для читателя.

Автоматизация подбора ключевых слов представляет собой актуальную задачу в условиях большого количества информационных ресурсов. Сегодня большинство методов подбора этой выборки протестировано на англоязычных текстовых корпусах, в то время как для анализа русскоязычных текстов используется достаточно узкий набор методов выделения ключевых слов.

Статья «Генерация ключевых слов для русскоязычных научных текстов с помощью модели mT5» ученых Анны Глазковой, Дмитрия Морозова, Марины Воробьевой и Андрея Ступникова вышла в журнале «Моделирование и анализ информационных систем».

Существует несколько подходов к подбору ключевых слов: извлечение их непосредственно из текста, подбор из заранее определенного перечня тематики или рубрики, генерация на основе семантики текста путем его обобщения и перефразирования. В последнем случае задача подбора ключевых слов схожа с задачей автоматического абстрактного реферирования текстов.

Большая часть широко используемых подходов к извлечению этих слов основана на выделении из текста наиболее значимых слов и словосочетаний по принципу обучения без учителя (unsupervised learning). К таким подходам относятся, в частности, статистические алгоритмы, такие как YAKE! и KP-Miner, графовые (TopicRank, TextRank) и ряд алгоритмов, основанных на применении методов машинного обучения и современных лингвистических моделей (KEA, KeyBERT).

Несмотря на впечатляющие результаты для ряда текстовых корпусов, алгоритмы, основанные на извлечении ключевых слов, обладают некоторыми ограничениями. В частности, они не способны определять количество этих слов автоматически и генерировать слова, отсутствующие в тексте в явном виде.

На практике же списки ключевых слов обычно включают в себя как слова и словосочетания, встречающиеся в тексте непосредственно, так и слова, семантически связанные с содержанием текста, но не упомянутые в нем явно. Данные ограничения могут быть преодолены при помощи нейросетевых моделей, в том числе современных лингвистических моделей для генерации текстов.

Ученые пытались преодолеть пробел в использовании современных лингвистических моделей для генерации ключевых слов для русскоязычных научных текстов. В статье представлены результаты экспериментов по генерации списка ключевых слов как последовательности токенов (единиц учета) на примере модели mT5.

Выбор модели обусловлен ее широким использованием для автоматического реферирования и, в частности, для реферирования русскоязычных текстов. Результаты сравниваются с результатами ряда широко используемых методов извлечения ключевых слов.

Среди преимуществ генерации ключевых слов с помощью предобученной лингвистической модели можно назвать отсутствие необходимости проводить нормализацию и задавать ограничения на количество и длину ключевых слов, возможность генерировать те слова, которые не упомянуты в исходном тексте в явном виде.

С другой стороны, указанные свойства могут быть также ограничениями указанного подхода. Дообучение рассмотренной модели требует наличия обучающей выборки и, вероятно, дообученная модель ограниченно пригодна для генерации ключевых слов для текстов других предметных областей.

Кроме того, эффективность предложенного подхода и значения метрик зависят от специфики корпуса текстов, используемого для экспериментов. В рассмотренном корпусе доля ключевых слов, не встречающих в тексте в явном виде, составляет 53.17 процента и 54.8 процента для обучающей и тестовой выборок соответственно.

Поскольку подходы, осуществляющие извлечение, а не генерацию ключевых слов, не способны генерировать слова данного типа, модели генерации текста, подобные mT5, имеют преимущество на таких корпусах. Работа выполнена в рамках проекта, поддержанного грантом Президента России для молодых ученых — кандидатов наук.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Тюменский государственный университет (ТюмГУ) — первый университет Тюменской области, был открыт в 1930 году. Готовит специалистов по 175 направлениям подготовки. Университет является участником федеральной программы стратегического академического лидерства «Приоритет 2030». Участие в программе способствует трансформации образовательного, научно-технологического и управленческого блоков ТюмГУ, а также его роли в качестве центра научно-технологического и социально-экономического развития региона.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
9 февраля, 11:48
Игорь Байдов

За десятки километров от побережья Гренландии лежат скалистые острова Китсиссут, которые на первый взгляд кажутся неприступными для людей, не имеющих современных лодок и других технологий. Однако авторы нового исследования выяснили, что тысячи лет назад люди все же смогли достичь этих суровых земель. Мореплаватели каменного века не просто посещали острова — они обосновались там, совершив одно из самых длинных и опасных морских путешествий в истории древней Арктики.

7 февраля, 12:57
Редакция Naked Science

Подобно летучим мышам, ориентирующимся в темноте, человек тоже может полагаться на эхо от звуковых сигналов, например щелчков языком, чтобы оценить расстояние до объектов. Как показало новое исследование, эхолокация — это навык, которому можно научиться.

8 февраля, 09:33
Максим Абдулаев

Международная группа генетиков секвенировала геномы жителей Судана. Исследование показало, что суданские копты — потомки христиан, выходцев из Египта — всего за тысячу лет приобрели защиту от малярии, получив необходимый ген в результате смешения с местными племенами.

6 февраля, 10:11
Александр Березин

В 1980-х годах большую популярность приобрела борьба с озоновыми дырами. Из-за нее хладагенты из хлорфторгулеродов заменили на аналоги из гидрофторуглеродов. Теперь ученые выяснили, что эта замена — как и следующие за ней, уже в рамках борьбы с глобальным потеплением — ведет к накоплению в атмосфере довольно опасных «вечных химикатов».

6 февраля, 16:16
Александр Березин

Группа ученых представила расчеты, по которым события в центре Млечного Пути можно объяснить без черной дыры. Правда, с физической точки зрения новое объяснение существенно более экзотично — настолько, что возникает вопрос о его соответствии бритве Оккама.

9 февраля, 13:50
Андрей Серегин

Паническое расстройство характеризуется физическим напряжением, усиленным сердцебиением и одышкой. Ученые из Бразилии нашли способ бороться с этим недугом, создавая схожее физическое напряжение, но в спокойной и контролируемой обстановке — во время физупражнений.

12 января, 15:39
Александр Березин

От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.

28 января, 10:50
Игорь Байдов

Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.

26 января, 14:26
Александр Березин

Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.

[miniorange_social_login]

Комментарии

1 Комментарий
Up Side
27.11.2025
-
0
+
This is a really interesting development. Accurate keyword generation is becoming more important as the volume of scientific literature grows so fast. A strong model doesn’t just help researchers find relevant work — it also improves how studies get indexed, shared, and discovered across platforms. Since I work with text-based tools myself, I really appreciate innovations that make handling written content easier. For anyone interested in experimenting with fun or creative text transformations, here’s a simple tool I use often: https://upsidedowntexts.com/
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно