• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
27 января, 13:04
ФизТех
233

Физики распутали сложные электрон-бозонные взаимодействия в присутствии магнетизма

❋ 4.4

Международная группа ученых провела теоретическое и экспериментальное исследование соединений лантаноидов с ферромагнитными свойствами, сосредоточив внимание на материале LaCo₂P₂. Исследование изучало взаимодействие электронов с бозонами как в объеме этого кристалла, так и на его поверхности с целью более точно определить взаимосвязь между объемными и поверхностными свойствами LaCo₂P₂, а также глубже понять необычные свойства подобных систем.

Анализ электрон-фононной связи в приповерхностной области ферромагнетика LaCo2P2. a) Данные ARPES, полученные вдоль направления . Действительная (b) и мнимая (c) части собственной энергии Σ( E ) для объемной зоны «3». d,e) То же для поверхностной зоны «2». Пунктирные линии демонстрируют модельную функцию Элиашберга / © Advanced Physics Research

Работа опубликована в журнале Advanced Physics Research. Материалы с лантаноидами более 60 лет привлекают внимание ученых благодаря их необычным магнитным свойствам. Эти соединения обладают не только интересным электронным строением, но и способностью изменять магнитные свойства за счет варьирования их химического состава. Исследование взаимодействий между электронами, магнитными возбуждениями и фононами в таких системах открывает широкие перспективы как для фундаментальной физики, так и для разработки новых материалов и устройств для прикладного использования.

Последние достижения в области многослойных систем на основе железосодержащих материалов и сложных соединений открыли пути для дальнейшего изучения научных и промышленных приложений, таких как высокотемпературная сверхпроводимость.

Группа физиков из МФТИ, Санкт-Петербургского университета, МИСиС, ИФПМ СО РАН в сотрудничестве с иностранными коллегами подробно и систематично исследовала электрон-бозонные взаимодействия в соединениях вида LnCo2P2, где Ln — это лантаноид, Co — кобальт, P — атом фосфора. Исследователям удалось получить уникальные результаты, касающиеся воздействия электрон-бозонных взаимодействий на электронную структуру этих материалов. В обсуждаемой работе приведены детальные исследования для материала LaCo₂P₂. В работе использовались методы фотоэлектронной спектроскопии с разрешением по квазиимпульсу (ARPES), а также теоретические расчеты на основе теории функционала плотности (DFT).

Диаграмма, изображающая свойства соединений переходных металлов / © Advanced Physics Research

Применение ARPES позволило исследовать электроны, расположенные вблизи поверхности материала, что обеспечило получение ценной информации об особенностях зонной структуры и поверхностных свойствах. Уникальность применения ARPES заключается в возможности выявлять как объемные, так и поверхностные электронные состояния, что позволяет описывать свойства, присущие как объему, так и поверхности кристалла. Расчеты DFT, в свою очередь, предоставили возможность рассчитать электронную структуру из первых принципов и смоделировать взаимодействия между электронами, фононами и магнонами.

Результаты исследования продемонстрировали, насколько существенно изменяются электронная и магнитная структура материала, а также электрон-бозонные взаимодействия на поверхности по сравнению с объемом ферромагнитного обЪекта. Авторам удалось выявить изменения свойств в отдельных атомных слоях, прилегающих к поверхности. В частности, было обнаружено, что магнитное упорядочение атомов кобальта, наблюдаемое в объеме, нарушается на поверхности.

Предположительно это связано с высокой чувствительностью магнитного момента кобальта во втором атомном слое к расстояниям прилегающих атомных слоев. Исследование показало, что даже незначительные изменения расстояний между атомами фосфора (P) и кобальта (Co) могут существенно повлиять на магнитный момент, изменяя как его величину, так и направление, которое может кардинально измениться вплоть до противоположного. Эти вариации расстояний сравнимы с амплитудами колебаний атомов, что подчеркивает важность роли фононов, квантов колебаний кристаллической решетки, в определении магнитных свойств поверхности материала.

Данные, полученные с помощью ARPES, показали, что характерный излом в дисперсии объемной зоны «3» значительно сильнее, чем в поверхностной зоне «2» вблизи уровня Ферми. Это объясняется тем, что электрон-фононное взаимодействие внутри кристалла значительно сильнее, чем на его поверхности. Это заключение также подтверждается результатами численного моделирования.

«Мы уверены, что результаты наших исследований помогут глубже понять и выявлять сложные взаимодействия электронов с магнонами и фононами в магнитноупорядоченных системах не только внутри кристаллов, но и на их поверхностях, которые могут быть представлены различными слоями атомов. Эти результаты важны для разработки и создания нетривиальных гетероструктур, в которых электрон-бозонные взаимодействия могут изменяться от слоя к слою, существенно влияя на магнитные и другие свойства структур. Для практического применения и надежного контроля свойств новых нанообъектов такая информация чрезвычайно важна», — рассказал Дмитрий Усачёв, ведущий научный сотрудник лаборатории фотоэлектронной спектроскопии квантовых функциональных материалов Центра перспективных методов мезофизики и нанотехнологий МФТИ.


Кристаллическая и электронная структура LaCo2P2. a) Тетрагональная кристаллическая структура LaCo2P2 с возможной плоскостью скола между слоями P и La, выделенной серым цветом. b) СТМ-изображение, иллюстрирующее топографию P-терминированной поверхности сколотого образца, полученное при 4,3 К. c) Карта поверхности Ферми, полученная с помощью измерений ARPES с P-терминированной поверхности . Пунктирный квадрат обозначает зону Бриллюэна поверхности. d) Расчетная изоэнергетическая карта поверхностной электронной структуры вблизи уровня Ферми. Более темный цвет соответствует более высокой локализации состояний в четырех самых верхних атомных слоях / © Advanced Physics Research

Проведенные исследования, отработанные методики и полученные результаты открывают новые горизонты для изучения сложных взаимодействий в материалах, содержащих магнитно активные d- и f-орбитали. Полученные данные могут быть широко использованы для моделирования новых систем с уникальными свойствами, а также в области квантовых материалов, что открывает перспективы для дальнейших исследований.

Результаты исследований в этой области могут быть применены для разработки высокоэффективных магнитных сенсоров, квантовых вычислений, создания новых материалов с уникальными магнитными и электрическими свойствами, которые потенциально могут быть использованы в электронике и других смежных областях.

Опубликованная работа представляет собой лишь один из множества шагов на пути к раскрытию сложных взаимодействий в материалах, которые могут изменить наш подход к современным технологиям.

Исследования проведены при поддержке Министерством науки и высшего образования России и МегаГранта.

В работе принимали участие ученые из МФТИ, МИСИС, СПбГУ, Института физики прочности и материаловедения РАН, а также их иностранные коллеги из Германии, Испании и Австрии.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
12 ноября, 10:47
Максим Абдулаев

Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.

13 ноября, 17:09
ФизТех

Ученые из МФТИ и Национального исследовательского центра «Курчатовский институт» создали первую в своем роде полную классификацию конических сингулярностей в геометрии Минковского. Это фундаментальное достижение в математической физике заполняет пробел, существовавший в общей теории относительности более 60 лет.

14 ноября, 15:28
Мария Азарова

Стали известны имена лауреатов Yandex ML Prize. Эту научно-образовательную премию основали в 2019 году для развития академического сообщества, а также поддержания мотивации исследователей и преподавателей к сфере искусственного интеллекта.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

12 ноября, 10:47
Максим Абдулаев

Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.

9 ноября, 15:00
Анатолий Глянцев

Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

24 октября, 14:02
РТУ МИРЭА

В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно