• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
08.08.2023
РНФ
446

Алгоритм машинного обучения вычислит эффективные поглотители углекислого газа

4.5

Ученые с использованием алгоритмов машинного обучения создали модели, способные по химическим и физическим свойствам жидкостей оценивать, насколько хорошо они связывают углекислый газ. Предложенный подход позволит ускорить поиск эффективных, дешевых и экологически чистых поглотителей, которые помогут бороться с выбросами парниковых газов в атмосферу.

Алгоритм машинного обучения вычислит эффективные поглотители углекислого газа
Алгоритм машинного обучения вычислит эффективные поглотители углекислого газа / ©Getty images / Автор: Татьяна Соловьёва

Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Separation and Purification Technology.

Развитие промышленности и урбанизация привели к росту выбросов углекислого газа в атмосферу. Он образуется при сжигании ископаемого топлива, работе электростанций, а также любых заводов и предприятий. Поскольку углекислый газ связывают с изменением климата, ученые стремятся уменьшить его выбросы и разрабатывают системы для его улавливания, которые можно размещать на энергетических установках, газогенераторах и других подобных источниках углекислого газа.

Перспективными считаются глубокие эвтектические растворители — вязкие смеси на основе органических или неорганических веществ. В их состав могут входить соли, органические кислоты, сахара, спирты, а также их производные. Глубокие эвтектические растворители образуются за счет того, что их компоненты связываются плотной сетью водородных связей.

При образовании таких связей происходит существенное перераспределение («размазывание») заряда на молекулах. За счет этого усиливается физическое взаимодействие между углекислым газом и соответствующими участками молекул растворителя. Также смеси способны поглощать газы путем химического связывания, особенно если в их состав входят амины — азотсодержащие соединения. Однако среди огромного разнообразия всевозможных комбинаций компонентов этих смесей сложно найти ту, что будет наилучшим поглотителем.

Коллектив авторов: Колкер А. М., Фадеева Ю. А. (первый ряд), Макаров Д. М., Голубев В. А. (второй ряд) / ©Аркадий Колкер

Ученые из Института химии растворов имени Г. А. Крестова РАН (Иваново) разработали алгоритм машинного обучения, способный предсказать, насколько хорошо глубокий эвтектический растворитель того или иного состава будет поглощать углекислый газ.

Алгоритм включал несколько отдельных моделей, которые оценивали различные свойства жидкостей: химический состав, строение входящих в них молекул, параметры состояния и температуру плавления. Эти характеристики были выбраны, поскольку они влияют на способность смеси поглощать газы. Для обучения алгоритма исследователи использовали уже известные экспериментальные и литературные данные для 400 смесей. Далее точность алгоритма проверили на другом наборе также уже известных растворителей. Оказалось, что модель по химическому составу смеси с точностью 90 процентов воспроизводила ранее установленную для нее опытным путем способность поглощать углекислый газ.

Схема исследования / ©Makarov et al. / Separation and Purification Technology, 2023

Авторы использовали разработанный алгоритм для анализа еще не изученных эвтектических растворителей. Из более чем 94 тысяч потенциальных поглотителей модель выбрала 1447 вариантов смесей, компоненты которых связывали углекислый газ с эффективностью более 30 мольных процентов.

«Предложенные вычислительные методы могут использоваться вместо “слепого” экспериментального поиска новых поглотителей углекислого газа, поскольку они позволяют быстро проанализировать десятки тысяч возможных вариантов смесей и найти наилучших “кандидатов”», — рассказывает участник проекта, поддержанного грантом РНФ, Дмитрий Макаров, соавтор исследования, старший научный сотрудник ИХР РАН.

Разработанные авторами алгоритмы находятся в открытом доступе и могут использоваться химиками всего мира для синтеза новых поглотителей углекислого газа.

«Имея свыше 90 тысяч теоретических наборов смесей, с помощью алгоритмов машинного обучения мы отобрали те, что подходили нам по свойствам. Мы планируем расширить количество используемых при скрининге характеристик, в частности добавив модель для прогноза вязкости, от которой также зависят свойства поглотителей. Это позволит еще сильнее сузить круг смесей, рекомендованных к экспериментальному тестированию», — добавил руководитель проекта, поддержанного грантом РНФ, Аркадий Колкер, доктор химических наук, главный научный сотрудник ИХР РАН.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
РНФ осуществляет финансовую и организационную поддержку фундаментальных и поисковых научных исследований посредством финансирования прошедших конкурсный отбор научных, научно-технических программ и проектов.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Позавчера, 12:00
НИУ ВШЭ

Международная команда исследователей с участием ученых из НИУ ВШЭ изучила, как люди, владеющие двумя языками (билингвы), ассоциируют время с пространством. Оказалось, что и в первом, и во втором языке они связывают прошлое с левой частью пространства, а будущее — с правой. При этом чем выше уровень владения вторым языком, тем сильнее выражена эта связь.

Сегодня, 07:01
Татьяна

Неандертальцы процветали сотни тысяч лет в очень сложных, меняющихся условиях. Ключ к пониманию их способностей — диета. Важно выяснить, чем и как питалась эта ветвь людей. Установлено, что они охотились на крупных животных, а вот мелкая дичь под вопросом. Чтобы внести ясность, ученые приготовили птицу с использованием кремневых отщепов и углей.

Позавчера, 20:03
Андрей

Человек множеством способов загрязняет природу вокруг себя, преимущественно воду. В Мировой океан попадают как отходы с производств, так и тонны пластикового мусора. Все это способно отравлять жизнь морских животных, особенно редких вроде акул. Одним из малоизученных токсичных источников можно назвать наркотики, в частности кокаин. Случайное употребление этого вещества акулами раньше только предполагали, но теперь бразильские биологи нашли прямые доказательства.

22 июля
Татьяна

Исследуя глубоководные сообщества в районе Тихого океана, богатом железомарганцевыми конкрециями, ученые из Великобритании неожиданно обнаружили новый источник кислорода. Теперь они опасаются, что разработка этих месторождений может нарушить сложившиеся экосистемы.

Позавчера, 12:00
НИУ ВШЭ

Международная команда исследователей с участием ученых из НИУ ВШЭ изучила, как люди, владеющие двумя языками (билингвы), ассоциируют время с пространством. Оказалось, что и в первом, и во втором языке они связывают прошлое с левой частью пространства, а будущее — с правой. При этом чем выше уровень владения вторым языком, тем сильнее выражена эта связь.

22 июля
Татьяна

Врачи давно знают, что во время каникул и праздников растет число пациентов с нарушениями работы сердца. Причина — в неумеренном пьянстве. Две группы ученых показали, как спиртное вызывает мерцательную аритмию, а также предупредили о рисках для женщин, принимающих гормональную заместительную терапию.

25 июня
Игорь Байдов

Ученые из Китая и Бельгии воссоздали в лаборатории условия, существовавшие на Меркурии четыре миллиарда лет назад, и выяснили, что они были идеальными для образования слоя алмазов, который с течением времени становился лишь толще.

1 июля
Александр Березин

Необычный биологический вид, по оценке авторов новой научной работы, пригоден для заселения четвертой планеты без каких-либо предварительных условий — уже в том виде, в котором он существует сейчас. Поскольку речь идет о фотосинтетическом организме, он способен нарабатывать существенное количество кислорода. Интересно, что кандидат на терраформирование Марса сохранил жизнеспособность после месяца в жидком азоте.

12 июля
Александр Березин

Falcon 9 Block 5 впервые за три сотни запусков дал частично неудачный полет. Ракета выводила 20 спутников компании SpaceX, с 15 связь уже пропала, еще пять могут быть потеряны в ближайшее время.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно