Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Алгоритм машинного обучения вычислит эффективные поглотители углекислого газа
Ученые с использованием алгоритмов машинного обучения создали модели, способные по химическим и физическим свойствам жидкостей оценивать, насколько хорошо они связывают углекислый газ. Предложенный подход позволит ускорить поиск эффективных, дешевых и экологически чистых поглотителей, которые помогут бороться с выбросами парниковых газов в атмосферу.
Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Separation and Purification Technology.
Развитие промышленности и урбанизация привели к росту выбросов углекислого газа в атмосферу. Он образуется при сжигании ископаемого топлива, работе электростанций, а также любых заводов и предприятий. Поскольку углекислый газ связывают с изменением климата, ученые стремятся уменьшить его выбросы и разрабатывают системы для его улавливания, которые можно размещать на энергетических установках, газогенераторах и других подобных источниках углекислого газа.
Перспективными считаются глубокие эвтектические растворители — вязкие смеси на основе органических или неорганических веществ. В их состав могут входить соли, органические кислоты, сахара, спирты, а также их производные. Глубокие эвтектические растворители образуются за счет того, что их компоненты связываются плотной сетью водородных связей.
При образовании таких связей происходит существенное перераспределение («размазывание») заряда на молекулах. За счет этого усиливается физическое взаимодействие между углекислым газом и соответствующими участками молекул растворителя. Также смеси способны поглощать газы путем химического связывания, особенно если в их состав входят амины — азотсодержащие соединения. Однако среди огромного разнообразия всевозможных комбинаций компонентов этих смесей сложно найти ту, что будет наилучшим поглотителем.
Ученые из Института химии растворов имени Г. А. Крестова РАН (Иваново) разработали алгоритм машинного обучения, способный предсказать, насколько хорошо глубокий эвтектический растворитель того или иного состава будет поглощать углекислый газ.
Алгоритм включал несколько отдельных моделей, которые оценивали различные свойства жидкостей: химический состав, строение входящих в них молекул, параметры состояния и температуру плавления. Эти характеристики были выбраны, поскольку они влияют на способность смеси поглощать газы. Для обучения алгоритма исследователи использовали уже известные экспериментальные и литературные данные для 400 смесей. Далее точность алгоритма проверили на другом наборе также уже известных растворителей. Оказалось, что модель по химическому составу смеси с точностью 90 процентов воспроизводила ранее установленную для нее опытным путем способность поглощать углекислый газ.
Авторы использовали разработанный алгоритм для анализа еще не изученных эвтектических растворителей. Из более чем 94 тысяч потенциальных поглотителей модель выбрала 1447 вариантов смесей, компоненты которых связывали углекислый газ с эффективностью более 30 мольных процентов.
«Предложенные вычислительные методы могут использоваться вместо “слепого” экспериментального поиска новых поглотителей углекислого газа, поскольку они позволяют быстро проанализировать десятки тысяч возможных вариантов смесей и найти наилучших “кандидатов”», — рассказывает участник проекта, поддержанного грантом РНФ, Дмитрий Макаров, соавтор исследования, старший научный сотрудник ИХР РАН.
Разработанные авторами алгоритмы находятся в открытом доступе и могут использоваться химиками всего мира для синтеза новых поглотителей углекислого газа.
«Имея свыше 90 тысяч теоретических наборов смесей, с помощью алгоритмов машинного обучения мы отобрали те, что подходили нам по свойствам. Мы планируем расширить количество используемых при скрининге характеристик, в частности добавив модель для прогноза вязкости, от которой также зависят свойства поглотителей. Это позволит еще сильнее сузить круг смесей, рекомендованных к экспериментальному тестированию», — добавил руководитель проекта, поддержанного грантом РНФ, Аркадий Колкер, доктор химических наук, главный научный сотрудник ИХР РАН.
Западные колонии финикийцев включали сильнейшую морскую державу древнего Средиземноморья — Карфаген. Его жители использовали финикийский язык и поклонялись соответствующим богам. Теперь генетики заявили, что практически все эти люди — не потомки финикийских колонистов. Происхождение их в связи с этим довольно загадочно.
В прошлых исследованиях о скулшутинге в Соединенных Штатах некоторые эксперты называли основной причиной случаев массовой стрельбы в учебных заведениях наличие большого количества легальных «стволов» на руках у людей. Но в подобных работах редко систематически анализировали роль огнестрельного оружия в жизни школьных стрелков. По мнению профессора социологии Энн Нассауер из Эрфуртского университета (Германия), эта деталь роднит большинство совершавших такого рода нападения в США.
Многие, наверное, слышали фразу «Между ними возникла „химия“». Поясняя смысл выражения, часто говорят, что любовная химия между мужчиной и женщиной — это нечто сложное и с трудом поддающееся определению. Однако ученые не любят такой неясности, поскольку она мешает исследовать явление. Недавно группа психологов с помощью опроса выяснила основные компоненты взаимного влечения в паре, которое принято называть романтической, или любовной, химией.
Распространено мнение, что, чем чаще пара занимается сексом, тем сильнее каждый из партнеров доволен отношениями. Международная команда исследователей проверила этот тезис.
В 2006 году исследователи из Великобритании объявили, что легендарный антикитерский механизм, древнегреческий «компьютер», мог быть всего лишь игрушкой для демонстрации астрономических явлений. Авторы нового исследования подтвердили это, построив математическую модель на основе данных своих коллег, которая показала, что шестерни устройства заклинивало при запуске. Но несмотря на полученные результаты, ученые пытаются спасти репутацию древнего чуда техники, обвинив предыдущую команду в ряде ошибок.
Примерно 41-42 тысячи лет назад на Земле произошел кратковременный сдвиг магнитных полюсов, который мог способствовать вымиранию неандертальцев, но не Homo sapiens — их выживание авторы нового исследования связали с появлением теплой одежды и добычей охры.
До 13 тысяч лет назад в Северной Америке жил вид, который ученые до недавнего времени считали волком. Компания Colossal Biosciences объявила о возрождении этого вымершего вида, но биологические детали ставят ее заявление под серьезное сомнение.
Известный американский отраслевой обозреватель Эрик Бергер взял интервью у экипажа космического корабля Boeing, из-за технических проблем которого два астронавта задержались на орбите на девять месяцев вместо одной недели. Детали, которые они озвучили, указывают на серьезные проблемы Starliner, о которых ранее умалчивали. Люди провели немало времени при глубоко нештатной температуре. При слегка другом сценарии миссии экипаж корабля мог погибнуть. Официальные заявления NASA и Boeing сразу после июньского полета к МКС, судя по интервью, были заведомо неправдивыми.
Многие знают, как популярны сувениры из окаменелостей — зубы древних акул или полированные панцири аммонитов. Но чем реже встречаются такие артефакты, тем они ценнее, то есть на них можно много заработать. И это проблема для палеонтологов. Американский специалист по тираннозаврам оценил ущерб, который нанесла коммерческая добыча костей T. rex и подсчитал среднюю цену таких образцов. Оказалось, больше половины найденных тирексов находится в частных руках, а значит, для науки они недоступны или ненадежны.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии