• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
19 июня
Игорь Байдов
1 638

Химики «вызвали» демона Максвелла, чтобы сконструировать химический насос

4.2

Группа британских ученых претворила в жизнь мысленный эксперимент физика XIX века Джеймса Максвелла и создала систему, которая может найти применение в фармацевтике. Сегодня, чтобы получить «чистое» действующее вещество, молекулы, из которых оно состоит, необходимо очистить от ферментов, смесей и других компонентов, используемых при изготовлении лекарства. На эти химические разделения уходит огромное количество энергии. Новая система гораздо менее энергозатратная.

Джеймс Максвелл
В 1867 году шотландский физик Джеймс Максвелл, пытаясь понять статистическое поведение частиц газа, поставил мысленный эксперимент, который позже назвали «демоном Максвелла» / © SSPL, Science Museum, Getty Images

Работа мощных компьютеров, понимание рыночных отношений, управляющих мировой экономикой, — чтобы осмыслить закономерности и силы, приводящие в движение все эти процессы, исследователи зачастую прибегали к мысленным экспериментам, в которых «принимали участие» демоны, дьяволы, големы и джинны.

Эти вымышленные существа — не результат суеверий ученых или порождение псевдонаучных теорий, а что-то вроде полезных аллегорий, сыгравших важную роль в становлении современной науки.

В 1867 году шотландский физик Джеймс Максвелл (James Maxwell), пытаясь понять статистическое поведение частиц газа, поставил мысленный эксперимент «с участием» одного из таких демонов. Этот демон управлял «дверцей» в наполненном газом герметичном сосуде и выбирал, какие молекулы из одной части емкости могут перемещаться в другую.

Демон Максвелла избирательно пропускал в один отсек сосуда быстрые горячие молекулы, а в другой — медленные холодные. В итоге все молекулы сосуда разделялись на две части: в одном отсеке становилось теплее, в другом — холоднее.

После разделения молекул средние скорости частиц оказывались разными. Температура напрямую зависит от средней скорости частиц, а значит, демон создавал разницу температур между двумя частями емкости.

Своими действиями демон Максвелла упорядочивал молекулы и тем самым уменьшал энтропию системы. Это противоречит второму закону термодинамики, который гласит, что тепловая энергия или тепло передается от более горячего тела к более холодному, но не может переходить самопроизвольно от более холодного тела к более теплому, если, конечно, не использовать энергию, чтобы заставить тепло двигаться в обратном направлении.

Чуть позже физики решили этот парадокс: они успешно моделировали мысленный эксперимент Максвелла в лаборатории на разных объектах, в основном на микроуровне. При этом второй закон термодинамики не нарушали. Система была устроена так, что демон получал энергию для сортировки из внешнего источника.

Группа британских химиков под руководством Джонатана Нитшке (Jonathan Nitschke) из Кембриджского университета создала «химический насос», который функционирует так же, как мысленный эксперимент Максвелла. Однако, в отличие от всех предыдущих опытов с демоном, в которых ученые пытались заставить его работать на микроуровне, система авторов нового исследования действует на гораздо больших масштабах: разделяет молекулы на расстоянии нескольких сантиметров — самое большое на сегодня. Результаты исследования опубликованы в журнале Nature Chemistry.

Устройство химиков представляет собой U-образную трубку, заполненную светочувствительным химическим веществом под названием орто-фторазобензол (fluoroazobenzene). Один из изгибов трубки ученые заполнили водным раствором на основе комплекса железа, который может переносить молекулы с одного изгиба трубки к другому. Этот раствор эквивалентен демону, открывающему или закрывающему дверцу в мысленном эксперименте Максвелла.

Когда Нитшке и его команда облучали светом один из изгибов (с длиной волны 530 нанометров и 400 нанометров), орто-фторазобензол изменялся таким образом, чтобы уместиться в раствор на основе железа, который затем переносил молекулы вещества на другой изгиб трубки. В результате общая концентрация орто-фторазобензола повышалась во втором изгибе, но падала в изначальном, первом. В природе, то есть без участия ученых, ничего подобного не произошло бы. Иными словами, демон Максвелла в виде водного раствора на основе комплекса железа создавал градиент концентраций, а необходимую для этого процесса энергию давал свет.

Затем химики ввели в свою систему еще один компонент — растворимый нафталин. Оказалось, при его добавлении концентрация орто-фторазобензола во втором изгибе увеличивалась почти в два раза по сравнению с системой без нафталина.

Эксперимент с трубкой
Во время эксперимента ученые облучали светом два изгиба U-образной трубки с длиной волны 530 нанометров и 400 нанометров / © J. Pruchyathamkorn et al., Nature Chemistry, 2024

Команда Нитшке собирается повторить свой эксперимент, но с молекулами других веществ. Если опыт окажется успешным, «химический насос» можно будет использовать в производстве лекарств для очистки действующего вещества от ферментов, смесей и других компонентов.

Сегодня на процессы химического разделения исследователи тратят значительное количество энергии: например, в США это составляет примерно 50 процентов от общих мощностей промышленного энергопотребления. Традиционные методы химического разделения требуют интенсивного нагрева и охлаждения, что делает их крайне энергозатратными. В этом случае система группы Нитшке выглядит крайне привлекательной, ведь для ее работы будет нужно гораздо меньше электричества.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
10 часов назад
Наталия Лескова

Зачем нужно изучать ядра планет? Как зарождалась эта наука и почему она важна? Что такое гамма-всплески и зачем нам знать, откуда они идут? Остается ли Россия великой космической державой и зачем вообще это всё надо? Об этом рассказывает Игорь Георгиевич Митрофанов, руководитель отдела ядерной планетологии Института космических исследований РАН, доктор физико-математических наук, академик Международной академии астронавтики.

Позавчера, 11:27
НИУ ВШЭ

Коллектив ученых НИУ ВШЭ совместно с Институтом высшей нервной деятельности и нейрофизиологии РАН изучил реакции людей на обман в условиях стресса и умственного напряжения. Оказалось, что привычка курить мешает хорошо справляться с задачами, требующими памяти и внимания, и ухудшает способность человека распознавать обман.

19 ноября
Андрей

Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

15 ноября
Елизавета Александрова

Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.

19 ноября
Юлия Трепалина

Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.

30 октября
Елизавета Александрова

Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

31 октября
Татьяна

Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно